
UNCLASSIFIED Copy of 49 copies

AD-A283 662

IDA DOCUMENT D- 1425

PROCEEDINGS OF THE WORKSHOP ON LARGE, DISTRIBUTED,
PARALLEL ARCHITECTURE, REAL-TIME SYSTEMS

94-26733

Dennis W. Fife, Task Leader

Norman R. Howes
Jonathan D. Wood

July 1993 - !" 2"... ..

and I; -9
Sponsored by

Ballistic Missile Defense Office
and

NASA Ames Research Center

Approved for public release; unlimited distribution: 8 June 1994.

94 8 22 102
INSTITUTE FOR DEFENSE ANALYSES
1801 N. Bca Lrg rd StrS , Alexandria, Virginia 223 11- 1772

UNCLASSIFIED IDA Log No. HOJ 93-044499

DEFINITIONS
IDA publishes the following documents to report the results at its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which lal have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch. the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA. 0

Group Reports

Group Reports record the findings and results of IDA estab!s.;,e, working groups and
panels composed of sp,,or idiv,,uals addressing major issues which otherwise would be
The subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers. also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reactinn studies. (b) to record the proceedings of
conferences and meetings. (c) to make available preliminary and tentative results of
analyses. (di) to record data develoDed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MOA 903 89 C 0003 for
the Department o0 Defense. The publication ot this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

1993 Institute for Defense Analyses

The dovernment of the United States is granted an unlimited license to reproduce this
document.

I I I II li i mi D e mu0

UNCLASSIFIED

IDA DOCUMENT D-1425

PROCEEDINGS OF THE WORKSHOP ON LARGE, DISTRIBUTED,
PARALLEL ARCHITECTURE, REAL-TIME SYSTEMS

Dennis W. Fife, Task Leader

Norman R. Howes
Jonathan D. Wood

July 1993

Approved for public release; unlimited distribution: 8 June 1994.

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
TasK T-R2-597.2

UNCLASSIFIED

Preface

This document was prepared by the Institute for Defense Analyses (IDA) under the

Task Order, Ballistic Missile Defense Office Software Technology Plan, and fulfills an

objective of the task, to deliver the proceedings of the workshop on Large, Distributed, Par-

allel Architecture, Real-Time Systems. The workshop was sponsored by the Ballistic Mis-

sile Defense Office and NASA Ames Research Center.

The Document was assembled and the introductory remarks were written by Dr.

Dennis Fife, Dr. Norman Howes, Mr. David Wheeler, and Mr. Jonathan Wood. The con-

tents of the document were furnished by the participants of the workshop, to whom we

express our sincere appreciation.

liii

Foreword

The Institute for Defense Analyses hosted a workshop on the software engineering

issues associated with large, distributed, parallel architecture, real-time systems from

March 15th through March 19th, 1993. It was jointly sponsored by the Strategic Defense

Initiative (now the Bdliistic Missile Defense Organization) and NASA Ames Research

Center. The workshop's purpose was to bring together researchers from industry and aca-

demia who are currently designing systems of this type or doing research that bears upon

real-time issues of interest to the sponsors. Participation at the workshop was by invitation.

The number invited was small (twenty-three). The number accepting was seventeen. They

contributed a total of fifteen papers. Also participating were representatives from the spon-

soring agencies.

The participants were asked to submit a position paper prior to the end of 1992 on

the following four issues: (1) What is the best design methodology for this class of systems?

(2) What is the proper relationship between design theory and scheduling theory? (3) What

is the best method for validating this class of systems? and (4) What are the most promising

areas where resources might be applied for near term benefits? These position papers were

distributed to all the participants on February 1, 1993 in order for the participants to review

the positions being taken by their fellow participants. At the workshop, each participant

was given the opportunity to formally present his or her position. However, much of the

workshop time was devoted to informal discussions of the basic issues.

The proceedings that follow include several items. First, there is a copy of the work-

shop agenda (which was not followed in exact order due to several on-line reschedulings

of the formal talks). Second, there is a summary of the discussions of the four major issues

of the workshop. This summary was prepared by IDA workshop participants and thus may

not reflect the opinions of all the participants. Third, there is a copy of the fifteen position

papers presented at the workshop. Fourth, there are copies of the transparencies for most of

the formal pre3entations. Copies of presentations by the sponsors were not included, at their

request.

V

The workshop was very helpful in summarizing and clarifying the key issues relat-

ed to the class of systems discussed at the workshop. It was also helpful in quantifying the

magnitude of the problems associated with the issues. On behalf of the sponsors and IDA,

we would like to express our thanks to all participants for sharing with us their experience

and insights.

Dennis f-ife

Norman Howes

David Wheeler

Jonathan Wood 9

V

9

vi

Summary of the Workshop

Thc workshop revealed sharp differences of opinion with regard to the first two

workshop issues, namely. what is the best method to design large, distributed real-time sys-

tems, and what should be the relationship between design theory and scheduling theory'?

The differences confirmed the often mentioned "disconnect" between design theory and

scheduling theory. Several real-time designers at the workshop indicated that they concen-

trate on designing practical systems that have acceptable real-time behavior, relying on

design guidelines they have developed from experience that are meaningful to them. These

guidelines often have provisions for designing functionality into the system other than tim-

ing behavior, e.g., maintainability, conceptual clarity, testability, etc. They then use mea-

surement and tuning during the software testing phase to correct or improve their design's

real-time behavior.

Scheduling theorists at the workshop thought that designers should concentrate on

deriving abstract representations of processing in order to apply an established scheduling

model, e.g., rate monotonic scheduling, that can ensure acceptable real-time behavior (if

the abstract representation faithfully models the real system). If the real system fails to sat-

isfy the necessary assumptions and approximations of the model, then the scheduling the-

orists advised redesign of the application system to better fit the abstract model. This

disconnect needs to be overcome through better design methods and tools that improve

understanding and control of real-time behavior much earlier than software testing, and

through scheduling concepts that support more general and flexible decision-making. The

workshop discussion tried to identify specific strategies to "work-around" the disconnect

and thereby make best use of the guidance available from both schools of thought. Basical-

ly, these work-around strategies were iterative techniques to do either a schedulability anal-

ysis of a design or a designability analysis of an abstract scheduling representation

(depending on which point of view one adopts) early in the design phase, and to continue

refining the design with schedulability considerations as the design progresses.

On the other hand, the workshop revealed consensus on how real-time systems

should be validated. This consensus called for designing code instrumentation into systems

vii

for validati.i•n purposes and leaving it in when a system is fielded. This insures that the sys-

tem timing is not altered between validation and fielding and it provides a "'window" into

the operational system to alow reproduction of event sequences leading up to any system

failures. This is important since real-time system failures are usually difficult to reproduce

due to concurrent activities within the system.

The workshop provided some ideas for investigations in the near term that address

issues arising with the new generation of distributed (and often parallel) real-time systems.

Specifically, it was recommended that the proper application of object oriented technology

be determined for real-time systems and that a standardized real-time Inter-Process Com-

munication (IPC) mechanism be developed that is independent of system architecture. Fur-

ther, it was recommended that there should be more support (funding) for experimentation

with (as opposed to creating more) real-time design methodologies, in order to quantify

their value by competitive design "shoot outs" with some objective party refereeing the

competition.

V

viii

Overview of Workshop Discussions

On the issue of what is the best design method for the class of systems under dis-
cussion, there was virtually no agreement. Those who discussed design methods all dis-

cussed different methods. Furthermore, some of those whose specialty is scheduling theory
questioned whether the design methods presented were real-time design methods at all.
Their objection is that time is not taken into consideration in the design methods in such a

way that "schedulability analysis" can be conducted from the very beginning of the design
process. Schedulability analysis provides the ability to determine if the individual tasks

comprising a system will meet their deadlines.

On the other hand, several who have been engaged in real-time design projects were
not concerned whetikzr schedulability analysis could be performed from the beginning of

the design process. Everyone thought that some form of schedulability analysis was even-
tually necessary (the extreme being to validate system timing during system testing). It was

agreed during the discussions that most real system timing requirements are stated in terms
of end-to-end, top level requirements rather than in terms of deadlines for individual tasks,
which are hardly ever known at the time of system specification. Some designers argued

that the chief concern during the initial phase of design was the structuring of the system to
meet these top level requirements rather than worrying about individual task deadlines,

since the individual tasks might not even be known so early.

But almost without exception, the scheduling theorists seemed to be of the opinion

that the first thing that needed to be done was to decompose the systems into tasks in order
that schedulability analysis could be performed, arguing that at all times there needs to be

some level of assurance (less certain at first, more certain as the design progresses) that the

set of tasks into which the system is decomposed at the present time, can meet their dead-
lines. All the real-time design methods discussed at the workshop involved some method

of using system requirements to structure the design, often taking into consideration other

features than simply the timing requirements. This leads to system decompositions (into
tasks) that are often hard to analyze using current scheduling theory tools. Essentially, the

designers want to be able to make design decisions not necessarily related to timing

ix

requirements and then have scheduling tools that can accommodate these designs, whereas,

the scheduling theorist wants designers to work within a framework that makes the sched-
uling problem more tractable. 0

The end result is the previously mentioned "disconnect" between design theory and

scheduling theory. The discussions revealed that this disconnect is very real and needs to

be given careful consideration during the design of large, complex, real-time systems. For 0
small single processor, real-time systems, e.g., intelligent controllers or low level sample
data systems, a designer often can work with current scheduling theory. But it must be rec-

ognized that the assumptions of some of the theories, e.g., rate-monotonic scheduling the-
ory, impose considerable restrictions on the design process (for instance, the assumptions

of a single processor, non-distributed architecture; of periodic or possibly sporadic tasks;
of static periodicities or perhaps a small finite collection of modes; of known task execution

times, etc.), to the point of being unrealistic to many designers. At present, the prospect for
developing scheduling theories that support designers, in the way they would like to design,

is limited. There are some results in this area (see for instance the paper by Le Lann), how-
ever, generalized results (ones not predicated on highly restrictive assumptions) appear to

be difficult to realize.

During the presentations and discussions of the second day, it was generally agreed 9

that real-time design theory and real-time scheduling theory are related, but there was no

agreement as to what the relationship should be. Designers usually view schedulability
analysis as a tool (one of many) to be used in the design process. They are not necessarily

convinced that even though you can apply some scheduling theory to the tasks comprising S
their design, and even though the theory predicts that the tasks are schedulable, that the real

system will really behave this way when it is coded and tested. This is because of the many
factors that affect system timing that are difficult to take into consideration when applying
the theory, especially when distributed or parallel processing elements are present in the S

design. What cdesigners want is a scheduling theory that takes into consideration the reali-

ties of the problem space they are designing in. They do not consider analyses based on
restrictive assumptions particularly relevant to the design process. In fact, most of them are

not sure what weight should be attached to such analyses. 0

On the other hand, scheduling theorists usually believe that the proper timing

behavior is so critical in real-time systems (it is this factor that distinguishes them from oth-

er types systems), that the whole design process needs to be structured around schedulabil-
ity analysis. For otherwise, one is likely to produce a system that is impossible to make

x

meet its timing requirements. This marked difference in viewpoint will likely continue to

prevent complementary design and scheduling theories in the near future.

During the third day, surprising consensus was achieved regarding the issue of val-

idation of real-time systems. Essentially everyone was in agreement that in order to validate

that real-time systems .,,eet their timing requirements, and continue to meet their timing

requirements when fielded, it is necessary to instrument the code with some type of event

recording package, and that the instrumentation code remain a part of the fielded system. It

was agreed that most code debuggers, with which anyone had experience, alter the timing

of the system under test and are therefore of little value in validation. Further, it was agreed

that the few general code instrumentation packages that exist, have too much overhead to

be permanently left in the code. The current state of the practice is for developers to build

in their own test instrumentation, using specific knowledge of the application to achieve

efficiency.

This built in test instrumentation code also provides a "window" into the system

du ag operation. It is constantly running, dumping event occurrence information into some

area of memory which is overwritten when full. In the event of a system failure, the events

that occurred for some time period in the past (depending on memory size) are preserved.

It is only in this way that we can hope to reconstruct what happened. Without this tech-

nique, it is generally not known how to analyze timing failures in real-time systems since

they may not be readily reproducible.

During the last day of the workshop, participants discussed both the issue of where

resources should be placed to try to solve the design methodology and the design vs scned-

uling disconnect problems (since there was total agreement on the best way to validate real-

time systems it was no longer treated as an issue). Two suggestions that received a good

deal of su-pport involved narrower aims; namely, determining the role of object-oriented

technology in the real-time problem domain, and standardizing real-time Inter-Process

Communication (IPC). Bo,.h of these suggestions are directed at pieces of the over-all

design process that are becoming critical in current designs. Beyond this, it was recom-

mended that there should be more funding support for experimentation with (as opposed to

creating more) real-time design methodologies, and that this experimentation should seek

to compare and quantify the value of these methodologies in various situations. Finally,

there was the suggestion that received almost total support, that there be support (funding)

for some software design "shoot outs" of one or more representative real-time system, and

that some objective party referee the competition.

xi

List of Workshop Position Papers

1. Agrawala, Ashok Tomorrow's Challenge for Real-Time Systems 1

2. Baynes, Jay S., Position Paper for Workshop on Large, Distributed,
Parallel Architecture Real-Time Systems 3

3. Burns, A.'an and Welling, A. J., Large Distributed, Parallel Architectures
for Real- tim e System s ... 11

4. Gabrielian, Armen, The Role of Formal Methods in the Design of Complex
Real-Tim e System s 21

5. Gerber, Richard, Unifying Real-Time Design and Implementation 31

6. Goforth, Andre, The Impact of Computer Technology on Real-Time Design
and Real-Time Scheduling .. 39

7. Howes, Norman and Wood, Jonathan, Position Paper on Large,
Distributed, Parallel Architecture, Real-Time Systems 43

8. Jensen, E. Douglas, A Timeliness Model for Scalable Real-Time Computer
System s 5 1

9. Le Lann, Gerard, Why Should We Keep Using Precambrian Design
Approaches at the Dawn of the Third Millennium? 69

10. Liu, Jane W. S., Issues in Distributed Real-Time Systems 79

11. Locke, C. Douglass, On Software Architecture for Large, Distributed,
Parallel, Real-Time Systems .. 89

12. Nielsen, Kjell, Large, Distributed, Parallel Architecture, Real-Time
System s ... 95

13. Sha, Lui and Rajkumar, Ragunathan, Large Scale, Distributed, Real-Time
C om p uting ... 107

14. Son, Sang H., An Integrated Approach to Design and Development of
Large, Distributed, Real Time Systems 113

15. Zhao, Wei, Guarantees of Hard Real-Time Communications in FDDI
N etw orks 119

xiii

List of Attendees

I. Prof. Ashok Agrawala, University of Maryland

2. Dr. Jay S. Bayne, Bailey Controls

3. Mr. William H. Booth, Encore Computer Corporation

4. Prof. Alan Burns, York University

5. Mr. Ed Chevers, NASA Ames Research Center

6. Dr. Edward Feustel, Institute for Defense Analyses

7. Dr. Dennis W. Fife, Institute for Defense Analyses

8. Dr. Armen Gabrielian, Uniview Systems

9. Prof. Richard Gerber, University of Maryland

10. Mr. Andre Goforth, NASA Ames Research Center

11. Dr. Norman Howes, Institute for Defense Analyses

12. Dr. E. Douglas Jensen, Digital Equipment Corporation

13. Mr. Robert J. Knapper, Institute for Defense Analyses

14. Prof. Jane Liu, University of Illinois

15. Dr. C. Douglass Locke, IBM

16. Dr. Kjell Nielsen, Hughes Aircraft Company

17. Dr. Asghar I. Noor, Institute for Defense Analyses

18. Dr. Lui Sha, Software Engineering Institute

19. Prof. S. Son, University of Virginia

20. Mr. David A. Wheeler, Institute for Defense Analyses

21. Mr. Jonathan D. Wood, Institute for Defense Analyses

xvii

0

22. Dr. Wei Zhao, Texas A&M University

xviii

Tomorrow's Challenges for
Real-Time Systems

Ashok K. Agrawala
Department of Computer Science

University of Maryland
College Park MD 20742

(301) 405-2665

Real-time control systems have been around for a long time in the form of controllers for
closed, limited functionality systems such as those needed for the control of an appliance. Such
controllers were implemented using analog devices and converted to digital implementations
through a complete and detailed analysis of the closed, limited functionality environment
supported by such a system. But in the real world there are many examples of systems: which have
significant real-time requirements, which must support an open environment where all applications
and their execution sequences are not known, or are so large that they can not be taken into account
in the design, which have significant reliability and fault tolerance requirements.

Sometimes such systems have been referred to as large, mission-critical systems(LMCS). A
typical example is the air traffic control system. Design, implementation and life-time support of
such systems pose many new challenges to the designers and researchers in the field. These
challenges are not only for hardware technology or scheduling. This problem requires an
integrated approach of hardware, scheduling, fault tolerance, distributed operation in the form of
system technology that can support the systems of tomorrow systems effectively.

A typical general purpose computing application is characterized by the lack of any timing
constraints within which it mutt execute. On the other hand, real-time applications must execute
within timing constraints which may be soft or hard. Hard constraints must not be violated while
soft constraints may be violated with defined penalties. An LMCS usually has to support all three
types of applications and must, therefore, provide means for the timely execution of hard, soft and
non real-time applications while permitting controlled interactions among such applications.

Reliability and fault tolerant operation are very critical requirements for LMCS. Such systems
must continue to meet the timely execution requirements even when some faults occur. Many of
the techniques developed for handling faults do not support the timing requirements of a real-time
system. The design of LMCS has to address the conflicting goals of fault handling and real-time
operations such that both goals can be met. Further, the faults may occur not only because of the
failure of a hardware or software component; they may be caused by other conditions, such as
overload conditions resulting from inputs or signals received beyond the designed capacity of the
system. It is essential that the LMCS continue to function under such conditions, supporting a:

1

least the critical applications, and have degraded modes of operations.

Due to the conflicting requirements of real-time operation and fault-tolerant operation it is 0
essential that the fault tolerant aspects of the system be an integral part of the system design rather
than a separate add-on capability.

In order to support the required functionality of operation from multiple locations and fault
tolerance the LMCS has to be implemented as a distributed system. A distributed system which
supports real-time as well as fault tolerance requirements poses many new challenges. Temporal
coordination as well as the synchronization of the time at different machines has to be supported.
The communication among machines has to be carried out within the defined time constraints and
the resources a various sites have to be managed in a unified manner.

The LMCS require comprehensive solutions which can be implemented and supported during
the life time of the system in an integrated manner. We believe that straight forward adaptation of
the techniques developed to address the system design problems in isolation are not likely to yield
such comprehensive solutions. The life cycle support requires that not only the typical CASE tools
be available but many additional tools be available which permit the analysis of the resource
management, fault handling and timing requirements for the integrated system.

The development of large systems require that the techniques used be scalable. Many
techniques which work well for small problems either do not work for large problems or cause such
overheads that they can not be used for real-time operation.

One example of a project aimed at addressing the issues outlined above is Project Maruti at the
University of Maryland. The goal of this effort is to develop a machine independent system which
supports LMCS. The current prototype design implements Maruti kernel on Mach with minimum
changes to the Mach kernel. It supports the multiple time domains of applications and fault
tolerance requirements from the lowest level to the application overload handling. Scheduling and 0
resource management techniques developed in this effort support the distributed, fault tolerant
operation of the system and are scalable. Tools are being developed to support all the phases of
the life cycle of an application.

2 •

BAILEY CONTROLS COMPANY EDA Pouddon r
A U•IT OF TUB WLAG &AnlY GROP I

Position Paper
Prepared for the Institute for Defense Analysis

WORKSHOP ON LARGE, DISTRIBUTED, PARALLEL ARCHITECFURE REALTIME SYSTEMS

Jay S. Bayne, Phd

Vice Presidt, Resemb & Development
Bailey Conios Com•any

29801 Euclid Avenue
W'icklffe, OH 44092

216.585.5501 (v), 216.944.1008 (f)

Abstract The interrelated subjects of the design and the validation of large scale,
distributed, realtime systems ame critically important to the high volume,
global, commercial process control industry. A key requirement for these
mission critical control systems is scaleability with respect to such
attributes as functionality, predictable performance, degree of distribution,
fault tolerance, and serviceability. The thesis of this paper is that scaleable
commercial-grade realtime systems do not presently exist, even though the
global process control market demands such systems. The requisite base
technologies exist in various forms, some mature, some embryonic, but
their synthesis into stable, reusable, platform products has not received the
attention of commercial suppliers. This has retarded the acquisition of a
body of experience and the development of associated tools to support the
needed system design theories, specification and development
environments, and verification and validation methodologies.

The invitation to the "Workshop on Large, Distributed, Parallel Architecture RealTine
Systems" (WorLDPARTS ?) defines four major issues to which are offered the following
positions. The context of this response is defined by the requirements of large scale
"mission critical" plant and process control applications that are routinely found in the
global continuous process manufacturing industries. These industries include chemical,
petrochemical, mining and minerals, steel, pharmaceutical, electric utility, food and
beverage, waste water treatment, and pulp and paper segments.

Plant and process control systems for these segments involve thousands of I/O points
(Level 0 transducers), hundreds of regulatory control loops (Level I cell controls), tens of
supervisory controls (Level 2 inter-cell, or area controls), one or more sets of plant level
controls (Level 3 inter-area, or plantwide controls), and one or more sets of inter-plant
controls (Level 4 enterprise controls). Mission critical control applications comprise
those hardware/software systems that have primary responsibility for plant and process
production-, safety-, quality-, and regulatory agency reporting-related automation.

Within this application domain, the notions of "large, distributed, parallel architecture,
realtime systems" has very specific meaning. "Large" implies both wide physical
distribution (e.g., a campus setting), multiple nodes or network "end-systems" (e.g., 20-
100 computational elements), and/or logically or physically complex node configurations.
"Distributed" connotes both that applications (i.e., execution threads) span nodes, and
nodes are physically isolated, often geographically close to the manufacturing processes
they are responsible for controlling. "Parallel architecture" implies computing elements
that are either uni-processors that operate in n-for-one redundant sets, or multi-processors
that operate in loosely- or tightly-coupled arrays with local and/or shared global

January 7. 1993 @ 16:21

BAILEY CONTROLS COMPANY IDA Petdon pr
A •-T OF 1T, IUiAG BARIGRY GgOWP 1

memories (e.g., symmetric SISD or SIMD configurations). And finally "realtime"
implies that command and control application tasks must operate within specific "hard"
[real]time constraints that must be guaranteed as part of the "correct" operation of the
system.

Although not mentioned in the invitation, we believe that a critically important attribute
of such systems is "scaleability". Ideally, we would be able to allow functionality,
performance, timeliness, predictability, decentralization, and fault tolerance to be
scaleable attributes of distributed realtirne systems. System elements should be able to
scale upwards from small sets of command and control services to large sets with known
cost and complexity measures. Scaleable services, if properly implemented, would
provide a tangible basis for building "correct" systems from the ground up, realizing a
commercially important ability to incrementally expand the system while preserving its
basic correctness.

The commercial "distributed control system" (DCS) business celebrates its 15th birthday
this year, and is now in its second or third generation of technology, beginning with 9
centralized minicomputer-based data acquisition and control (SCADA) systems and
culminating in networked, microprocessor-based distributed computing systems. The
essential macro elements of today's systems include I/O subsystems, fault-tolerant
process controllers and data servers, and high performance, graphics-oriented human
interfaces providing command and control console functions. These elements typically
operate over tens of kilometer distances at 1-10 Mbps on redundant fiber, twinax, or coax
backbone networks governed largely by proprietary protocols. The base technologies
used within these contemporary macro products is changing rapidly, and over the short
term will look conservatively something like the following.

Circuit densities are increasing at about 25% per year, doubling every three years.
Device speeds are increasing at a similar rate. This is equivalent to realizing the same
device functionality in half the space at twice the speed every three years. As a related
development, the cost per processor instruction cycle is declining at 25% per year. This
yields 100% additional processing capacity (operating at twice the speed in half the
space) for the same cost every three years. The basis today is 25 MHz machines. By the
mid-fife of a new system we will be able to use 200 MHz processors in the same physical
space and at the same prices as today's machines. 9

The cost of memory is declining at 15% per year, dropping by a factor of two every five
years. DRAM densities are increasing at about 60% per year, quadrupling every three
years. Therefore, in the span of just 10 years we should see twelve times the memory
density at one quarter the cost. At the same time, application address space is being
consumed at one additional address bit per year, on average, suggesting we need an
additional 10 bits of address over the design half-life of a new machine. In today's
control systems we use about 17 bits of address space per Level 0 device, 21 bits per
Level 1 device, 23 bits per Level 2 device, and 24 bits per Level 3 device. By the year
2005 we estimate that Level 0 devices will utilize 26 address bits, with 32 bits at Level 1,
34 bits at Level 2, and 36 bits at Level 3. Clearly, 64-bit processors are required to
implement the upper domains of the next generation of machines.

Disk density is increasing about 25% per year, doubling in three years. This keeps pace
with the consumption of DRAM, and suggests that over the life of the system secondary
storage demands will increase for two principle reasons. First, backing storage is
required to contain (at least part of) the static images of the Level 1 through Level 4
machinery. Second, significant archival storage is required to log the operating history of
the plant. For example, a plant with 1,000 field measurments sampled at 1 Hz would

January 7, 1993 @ 16"21
4 0

AILEY coNTROLS COMPANY WDA Pdon PS
A WNIT OF 1 Mr Ir AGJMG GI ROU P (SOi

I

produce a raw Level 0 data rate of 64 Kbps, assuming 64 bits per point (data, plus status,
plus time stamp). That represents a potential uncompressed Level 0 swrage requirement

of over 2 Terabits per year, or 250 Mbytes per point per year. Assuming an average

compression factor of .6, we can estimate an appetite of 150 Mbytes per point per year of

required archival storage capacity.

Available communications bandwidth is increasing by a factor of 10 every three years.

Its basis today is 10 Mbps, yielding 100 Mbps by 1995, and 10 Gbps by 2005. This

bandwidth is expected to be absorbed for a number of reasons, primarily at automation
Levels 2 and 3, including: i) the routine use of multimedia man-machine interfaces that

support ir..egrated voice and full-frame video display systems; and ii) the increasing

utilization of optical sensors. These sensors have application in many control domains,
but when used for high speed flat sheet production (such as steel, film and paper making)

can produce enormous volumes of data in very short periods.

This brief summary suggests that by the end of the design half-life of the next generation

of plant control systems (circa 2005) the computational elements will routinely operate at

200-400 MHz, support address spaces of 30-40 bits, intercommunicate at 1-10 Gigabits
per second over optical paths, collectively track and control an evolving plant state

comprising over I06 objects, and utilize Terabyte backing storage subsystems. This

expectation points to the real system design problem -- software -- its creation,
configuration, deployment and maintenance.

With these few remarks as background the Issues, as defined in the IDA invitation, are
addressed in corresponding Position statements. These Positions are admittedly strategic
and terse in nature. Technical details would get messy. It is anticipated that the
following comments will provide sufficient material to begin more in depth discussions.

Issue 1 "What is the best method or methodology for designing large, distributed
realtime systems where processing elements may have a parallel
architecture?"

Position I First, distributed, realtime control systems that utilize computational
elements based on parallel architectures also generally support non-
parallel architecture elements within the same design. The realtime nature
of such systems demands that the distributed threads of control carry with
them scheduling semantics which guarantee predictable (i.e., timely)
performance across both classes of elements. Therefore, both the parallel
and non-parallel architecture elements of the distributed system must
support the same virtual-machine (i.e., VM or kernel) services that provide
for the realtime "transnode" threads. This requires an underlying realtime
IPC mechanism that supports both the parallel-architecture (i.e., tightly
coupled, shared memory environment) elements as well as the non-parallel
architecture (i.e., loosely coupled, message-based) elements of the
distributed system.

Second, to support the development of scaleable end-use applications that
implement the mission critical control policies of the system, the
applications must be modular, and implemented in such a manner that they
may be bound (compiled, linked, and/or interpreted) onto one or more
processing elements of the distributed system. This suggests a set of

January 7, 1993 @ 16"21
5

BAILEY CONrTROLS COMPANY EDA Posito Ppr
A UMT Or TM THE AG BAR= GROU 1

formal methods are required that are inherently "object-oriented" in
nature, at least in specification and design, if not in implementation.

These and other cogent reasons suggest two important rules for designing
large, distributed, realtime systems: i) separate policies required for
system coordination and management from mechanisms used to
implement them within and across various system elements, and ii) clearly
separate the mission critical applications from the underlying virtual
mahine by implementing formal application program interfaces (API's)
which enforce the system design rules. 0

The separation of system coordination and management policies and
mechanisms allows for the "objectification" of the underlying system
elements while allowing applications to implement for themselves selected
policies. This partitioning supports the (potentially dynamic) modification
of policies as the system runs, providing for adaptation and
reconfiguration of control regimes as external conditions and/or internal 9

system faults warrant. It also allows for different mechanisms to be used
by different system elements to enforce the same system policies.

The API's provide for stable interprocess (inter-object) semantics from
which verification and validation can proceed. The interface(s) may
promote the memory or processor models of underlying computing 0
elements (i.e., shared global address space vs. local memories holding
message-based agents), depending on the needs of the computations. It is
my contention that with the speed of processing elements, the size of
available memory subsystems, and the speed of interconnect networks, the
justification for shared memory is arguable. A fundamental design issue
for scaleable, distributed, realtime systems is location transparency. The •

means to achieve it are policy and mechanism issues.

The parallel-architecture elements of the distributed system may well
require a shared address space to carry out their local computations. With
the availability of 64-bit microprocessors (e.g., DEC's AlphaAXP) and
high speed mesh interconnect structures (e.g., CHPC's GalacticaNet) there 5

are a number of proposed parallel architectures that utilize a flat, global
directly addressed memory. While of some academic interest, this design
does not meet the needs of a scaleable, mission critical distributed control
systems.

Issue 2 "What should be the relationship between realtime design theory and
realtime scheduling theory in a design methodology for this class of
systems?"

Position 2 Their are a number of concepts associated with this issue that are system 0
platform (i.e., virtual machine) related, and a number which properly
belong to the control application problem domain. The first point I would
make here is that the two domains are different and must be clearly
understood. Too often the issues of scheduling are considered to be within
the domain of the host operating system when they more properly belong
to the set of application domain objects responsible for some mission •
critical function. Again, the design issue here is the clear separation of

January 7, 1993 @ 16"21 6

DAMLEY CONTROLS COMIPANY EDA PoWitonPaper
A Urr OF T •H BLIAnAY GROUP

mechanisms provided by the underlying VM in support of application-
level policies required to complete some task or transaction in a timely
manner.

The implication of this point of view is to make scheduling parameters
part of the application object's capability list. The activation (i.e.,
invocation) of an object will then dynamically associate its scheduling
parameters with the underlyi~ig VM services responsible for the thread(s)
executing within the object's address space. A dual of this viewpoint is to
associate scheduling parameters with a computation's (i.e., process or
task) execution thread at the point of its creation. These parameters then
"follow" the thread as it meanders through the distributed system in
pursuit of named objects (e.g., agents or actors) whose services are
required of the computation. In both cases the scheduling of the object (or
the scheduling of the task thread within the object) is governed by the
semantics of the application as opposed to the operating system of the
particular element executing the object's methods.

Here the realtime design issue is split into two parts: i) the scheduling
policies required by the application to meet its time requirements (e.g.,
deadline, highest priority, or best effort), and ii) the mechanisms to be
provided by the underlying VM for enforcing a formal and predictable
allocation of system resources for realizing the policies within a
population of (potentially) competing threads.

Issue 3 "What is the best method for validating that large, distributed, parallel
architecture realtime systems behave as specified?"

Position 3 This remains an open question. There are the classical, conservative
methods of component, subsystem, and ensemble testing to define the
execution profiles of the system's VM services and application objects
under "typical" operating conditions. There is "scenario analysis" based
on certain assumptions about the probabilities of system events (e.g.,
internal faults, external events), often based on Monte Carlo simulations
and the like. And for sufficiently small systems, there are correctness
proofs and/or exhaustive testing.

But, in general, the problem of designing a large, distributed, realtime
system that can be tested and verified "correct" under all of the non-
deterministic operating conditions it might face is difficult. In support of
our efforts at designing high-volume, commercial-grade, distributed
control systems that govern the behavior of hazardous (e.g., chemical,
refining, power production, pharmaceutical) processes, this issue is
receiving a great deal of attention.

Current systems achieve validation through 1) static configurations, 2)
limited applications functionality, 3) conservative implementations, 4) and
exhaustive testing. These techniques work relatively well for control of
low level regulatory loop control problems. They will not be sufficient to
handle the larger applicadion domains envisioned for our next generation
of plant control systems. In current systems, critical realtime applications
reside completely within a single node (element) in the distributed system.

January 7, 1993 @ 16"21
7

DAILEY CONTROLS CONPANY MA padn r
A UNIT OF 11M 31MG BAR"Y MSOMP =

In the next generation, applications will span nodes and require
"transnode" validation of performance.

The means to achieve predictable, correct performance of distributed
applications is through strict adherence to encapsulation, reuse, and 0
location transparency in design; and to implement system elements with
clearly defined interfaces that guarantee that parameters crossing the
boundary are consistent (e.g., type and range checking). Invocation side
effects must be bounded. System messages, from asynchronous fine grain
signals (e.g., interrupts) to synchronous coarse grain IPC messages (i.e.
request-reply semantics), must be universally understood. 0

With these facilities in place, supported by appropriate directory (e.g.,
request broker) services, the distributed nature of the system may be
understood by verification and validation test suites applied, incrementally
and iteratively, to selected ensembles of system objects. These various
subsets, whose interactions provide for key mission critical services of the 9
distributed realtime environment, can be validated prior to their
engagement in the larger population whose collective behavior is even
less deterministic.

These are basic principles behind, and motivations for, object oriented
systems. And they are well understood, in principle. What is missing are
formal and consistent specification methods, object interface (message)
semantics, and the associated tools and techniques for realizing the V&V
functions expressed above. There are a number of candidate disciplines
(e.g., IDEF-based), but they are not generally adequate for large control
systems which exhibit asynchronous, non-deterministic behavior. They
are better suited to large "transaction-oriented" systems whose request-
reply semantics are well defined (e.g., banking ATM's).

Issue 4 "Given that resources were available to enhance the design and testing
methodologies for this class of systems, what are the most promising areas S
where these resources could be applied?"

Position 4 The area where current technologies and practices are most deficient is in
the specification and implementation of task completion-time constraints,
especially when these computations are carried by transnode threads. The
problem is difficult in a single node system, whether that node be uni- or 0
multi-processor in construction. The problem of distributed realtime
guarantees is especially difficult because the underlying VM's do not
provide the realtime IPC (RPC mechanisms that provide for the requisite
services. CMU's Archon Project, and its Alpha OS, provides an excellent
example of an implemented solution for this general problem, but is
suffers from i) not being a commercial system, ii) not being supported by 0
formal methods and tools, and iii) being avant garde.

The availability of commercial-grade facilities must wait for OSF's
realtime extensions to its MACH microkerneL, extensions to Chorus, next
generations of Sun's Solaris, IBM's rationalization of OS/2 and AIX, and
so on. These distributed "object-oriented operating systems" will likely
see commercial application in the late 90's. Their introduction will

January 7, 1993 @ 16:21
8

BAILEY CONTROLS COMPANY IDA Pasifi= Paper
A URI OF TM SIAG SAI.IY MOUP

aatd1

encourage the development of tools, object libraries with standard

interface semantics (e.g., CORBA, DOMF), and a body of experience
from which to develop formal methods.

The most promising areas for support are i) the specification and
development of standardized realtime transnode EPC services which can
carry scheduling information, ii) policies and mechanisms to provide for
aggressively best effort scheduling of ensembles of threads executing on a

given (uni- or multi-processor) node within a distributed system, and iii)

methods and tools for expressing (in the functional requirements, design,
and V&V documentation) precisely the completion-time performance

required of a distributed computation. This includes he effects on the

external environment and the internal state of the distributed system of

being early, on time, or late.

Janumry 7, 1993 @ 1621 9

Large, Distributed, Parallel Architectures for Real-Time Systems

POSITION PAPER

A. Burns
AJ. Wellings

Department of Computer Science,
University of York, UK

1. INTRODUCTION
The following material considers the four issues raised in the Invitation to Attend:

"* What is the best method or methodology for designing large, distributed real-time sys-
tems where processing elements may be parallel architectures?

"* What should be the relationship between real-time Design Theory and real-time Schedul-
ing Theory in a design methodology for this class of system?

* What is the best method for validating that large, distributed, parallel architecture real-
time systems behave as specified?

* Given that resources were available to enhance the design and testing methodologies for
this class of system, what are the promising areas where these resources could be
applied?

In giving a more detailed response to the first question a number of the other issues are
addressed. We focus, in this position paper, on non-functional issues such as timeliness and
dependability.

We assume that the allocation of software objects to the set of distributed nodes is essen-
tially static (i.e. is undertaken before execution and then remains unchanged unless
reconfiguration following significant failure is employed). Within a node, where parallel archi-
tectures may be employed, allocation is dynamic. We also assume that the distributed nodes
are linked by shared communication media.

2. DESIGN METHODS

2.1. A Design Framework

The most important stage in the development of any real-time system is the generation of a
consistent design that satisfies an authoritative specification of requirements. Where real-time
systems differ from the traditional data processing system is that they are constrained by
certain non-functional requirements (e.g. dependability and timing). Tyeically the standard
structured design methods do not cater well with these types of constraints

It is increasingly recognised that the role and importance of these non-functional
requirements in the development of complex critical applications has hitherto been
inadequately appreciated 3. Specifically, it has been commion practice for system developers,
and the methods they use, to concentrate primarily on functionality and to consider non-
functional requirements comparatively late in the development process. Experience shows that
this approach fails to produce dependable real-time systems. For example, often timing

11

requirements are viewed simply in terms of the performance of the completed system. Failure

to meet the required performance often results in ad hoc changes to the system. This is not a

cost effe, ti- e process.

If hard real-time systems are to be engineered to high levels of dependability, the real-
time design method must provide:

"* the explicit recognition of the types of activities/objects that are found in hard real-time

systems (i.e. cyclic and sporadic activities);

"* the explicit definition of the application timing requirements for each object;

"* the explicit definition of the application reliability requirements for each object;

"* the definition of the relative importance (criticality) of each object to the successful
functioning of the application;

"* the support for different modes of operation - many systems have different modes of
operation (e.g., take-off, cruising, and landing for an aircraft); all the timing and
importance characteristics will therefore need to be specified on a per mode basis;

"* the explicit definition and use of resource control objects;

"* the decomposition to a software architecture that is amenable to processor allocation, 0
schedulability and timing analysis;

"* facilities and tools to allow the scheduh!•ility analysis to influence the design as early as
possible in the overall design process;

I restriction on the use of the implementation language so that worst case execution time
analysis can be carried out; 9

* tools to perform the worst case execution time and schedulability analysis.

A constructive way of describing the process of system design is as a progression of
increasingly specific commirments'.. These commitments define properties of the system
design which designers operating at a more detailed level are not at liberty to change. Those •
aspects of a design to which no commitment is made at some particular level in the design
hierarchy are effectively the subject of obligations that lower levels of design must address.
Early in design there may already be commitments to the structure of a system, in terms of
object definitions and relationships. However, the detailed behaviour of the defined objects
remains the subject of obligations which must be met during further design and
implementation.

The process of refining a design - transforming obligations into commitments - is
often subject to constraints imposed primarily by the execution environment. The execution
environment is the set of hardware and software components (e.g. processors, task dispatchers,
device drivers) on top of which the system is built. It may impose both resource constraints •
(e.g. processor speed, communication bandwidth) and constraints of mechanism (e.g. interrupt
priorities, task dispatching, data locking). To the extent that the execution environment is
immutable these constraints are fixed.

Obligations, commitments and constraints have an important influence on the
architectural design of any application. We therefore define two activities within architectural
design3 :

* the logical architecture design activity;

12 •

* the physical architecture design activity.

The logical architecture embodies commitments which can be made independently of the
constraints imposed by the execution environment, and is primarily aimed at satisfying the
functional requirements. The physical architecture takes these and other constraints into
account, and ,mbraces the non-functi'nal requirements. The physical architecture forms the
basis for asserting that the application's non-functional requirements will be met once the
detailed design and imiplementation have taken place. It addresses timing and dependability
requirements, and the necessary schedulability analysis that will ensure (guarantee) that the
system once built will function correctly in both the value and time domains (within some
failure hypotheses).

Requirements Definition

Logical Architecture Design

'I
Physical Architecture Design Execution Environment

(Schedulability Analysis) Constraints

Detailed Design

II
Coding including Execution Environment

Code Timing Estimations Constraints

Testing including
Code Timing Measurments

Figure 1: The Hard Real-time Life Cycle

Figure 1 gives an overview of the proposed framework. It is important to note, however, that
this figure does not identify phases (in a traditional waterfall model) but (potentially
concurrent) stages (activities). The output of each stage is a "product" that can be

13

independently evaluated. Consistency of notation between products clearly improved the

design process (see the following discussions on computational models and HRT-HOOD).

2.1.1. Logical Architectural Design

There are two aspects of any design method which facilitate the logical architecture design of

hard real-time systems. Firstly, explicit support must be given to the abstractions that are

typically required by hard real-time system designers. We take the view that if designs are to

be well structured so that they can be analysed, then it is better to provide specific design
guidelines rather then general design abstractions. For example, supporting the abstraction of

a periodic activity allows the structure of that activity to be visible to the design process which,
in turn, facilitates its analysis. In contrast, allowing the designer to construct periodic
activities out of some more primitive "task" activity produces designs which are more difficult
to analyse. Clearly, care must be taken so that the design method does not become cluttered
with too many abstractions but an adequate level of support is desirable.

The second aspect involves consuaining the logical architecture so that it can be allocated
to a distributed system and analysed during the physical architecture design activity. One
means of achieving this is to choose an appropriate computational model. Concurrency is
obviously an important abstraction within any such model. We do not, however, believe that a
synchronous communication model, such as that contained in CSP or CCS, is the correct
abstraction for real-time systems. Rather we support an asynchronous model in which active
objects (i.e. object that can give rise to spontaneous computation) interact via asynchronous
messages or non-active objects (which may be either entirely passive or provide some form of
protection over the data being communicated between the active objects; e.g. mutual 0
exclusion).

This computational model is used in the Mascot-3 design method 12, and the formal
method TAM11. We have also embodied the model into the HRT-HOOD design method, see
section 2.1.3.

2.1.2. Physical Architectural Design

The primary focus of this activity is the allocation of objects to the distributed system and the
analysis of the worst case response times for transactions (precedence related objects) running
through the distributed system. To achieve this the logical architecture must identify the run-
time objects of the application and give estimates of their resource needs (CPU cycles,
communication load exc). The available resources in the execution environment must
obviously also be known.

Rather than design to budget we believe that top level designs should be analysed to
obtain an estimate of their likely resource needs. These estimates should form the basis of an
initial schedulability analysis. If the design will not fit then extra resources must be found or
the scope of the design reduced. As detailed design and coding is undertaken the
schedulability analysis is re-done. Fixed budgeting and early allocation (of computing
activities to rules of the distributed system) reduces the flexibility required in the design
process. 0

In order to get sufficient flexibility into the allocation process it must be possible for a
design to be mapped on to the distributed system in many difference ways. Ideally it should

14 0

not be necessary to artificially split coherent objects in order to facilitate distribution. Rather
the design should articulate a population of objects that can be combined in many different
ways.

An application expressed in the computational model described earlier can easily be
distributed as the active objects only have an asynchronous relationship with one another. For
example a cyclic object on one node can release (and pass data to) a sporadic object on another

0 node by using a distributed implementation of the appropriate non-active object or
asynchronous message. All non-active objects can be distributed without affecting their
functionality. Only asynchronous messages are needed at the communication layer. The
temporal behaviour of the distributed system will change (when compared with the non-
distributed implementation), but this can be analysed by the scheduling model.

2.1.3. HRT-HOOD

Within a project funded by the European Space Agency (ESA) we have been developing a
structured design method for hard real-time systems. We took HOOD (Hierarchical Object
Oriented Design)' as a basis but modified the method in line with the framework outlined
above. In HRT-HOOD (Hard Real-Time HOOD) there are five object types: PASSIVE,
ACTIVE, PROTECTED, CYCLIC and SPORADIC. The CYCLIC objects execute
periodically; the SPORADIC ones have a minimum inter-arrival rate; the PASSIVE objects
offer no protection on the data they encapsulate whereas the PROTECTED objects can offer
protection (but are non-active). ACTIVE objects have no inherent (defined) structure. In a
real-time system they must decompose into terminal objects of the other four types.

There are strict rules as to how object types may decompose and use the interfaces of
other object types. The culmination of the logical design activity is a set of terminal objects
that are well defined (ie not ACTIVE). All CYCLIC and SPORADIC objects interact via
PASSIVE or PROTECTED objects, or via explicit asynchronous message passing (ie all
communication is asynchronous). For example a CYCLIC object may asynchronously release
a SPORADIC object. If an immediate response from an object is required then an
asynchronous message can trigger a transfer of control operation in a CYCLIC or SPORADIC
object (if such an operation is defined in the object's interface).

The timing requirements of the design are represented as attributes of the objects.
Mapping from HRT-HOOD to Ada 9X and to Ada 83 (with task optimisation) have been

undertaken4 '5. Preemptive priority based dispatching is used and PROTECTED objects
employ ceiling priorities to obtain their protection. Each CYCLIC and SPORADIC object
contains a single thread (task). A case study implementation of a single processor system has
been undertaken 6. This involved re-engineering the Olympus satellite's AOBS (Attitude and
Orbital Control System). The system was designed in HRTHOOD and implemented using a
modified version of Ada83 (to reflect Ada9X facilities).

HRT-HOOD is not presented as the definitive means of designing real-time systems. But
it has been defined to directly address the list of issues given earlier. We believe these issues
are crucially important.

15

Sa.. • .. .= ~ a n uum m a u unnm um • It 2|

0

2.2. Designing for Parallel Architectures
Whereas the level of concurrency in a distributed system is often explicit, the exploitation of
parallel hardware requires an implicit approach. This is because the task of designing software
that can execute, efficiently, with different levels of parallelism (including none) is
exceedingly problematic. The design process therefore needs:

"* Programming abstractions that can reduce the burden of constructing parallel programs.

"* Operating system (kernel) that give support for "infinite" parallelism.

"* Operating system (kernel) support for dynamic reconfiguration following the loss of
computing elements.

All of these activities need also to be coordinated with an effective approach to real-time.

One possible approach here is to allow an object to define its operation in such a way as
to allow a variable number of parallel threads to be created by the kernel. A minimum number
would however have to be guaranteed for the worst case response time to be calculated.

3. DESIGN METHODS AND SCHEDULING THEORY
As indicated above the three key issues are:
(a) The rules of decomposition allowed in the design method must not compromise the need

to analyse the complete design.
(b) Abstractions used in real-time systems (e.g. cyclic activities, deadlines, response times)

must be supported directly in the design method.

(c) Scheduling analysis must be applied as early as possible (to an incomplete design). •
To balance flexibility, predictability and efficiency, preemptive (or deferred preemptive)
dispatching of priority assigned threads is recommended. Priorities being, essentially, static.
The use of cyclic executives is considered to be too restrictive; the paper by Locke 10 argues
this case convincingly. Rate monotonic scheduling analysis (RMSA) has been very successful
in showing how an engineering approach can be applied to give predictions for the timing 0
behaviour of application using priority based run-time dispatching. The standard equations in
RMSA are exceedingly simple and use only a measure of processor utilisation to give
predictions. More comprehensive analysis can be achieved by considering the worst case
response times (WCRT) of the threads incorporated in the design. Recent analysis has used
this approach to give predictable WCRT in the presence of: •
"* Context switches
"* Release jitter
"* Clock interruptions with manipulations of delay queues
"* Threads with tight requirements for I/0 jitter control •
"* Mode changes
"* Sporadic threads that have deadlines unrelated to their worst case arrival rate

"* Sporadic threads that arrive in bursts
"* Deadlines less than, or greater than, period (for cyclic threads) 0
"• Threads with more than one deadline
" Threads with offset relations (with respect to one another)

16 0

There remains work to be done with multi-processor (parallel) nodes (i.e. to make sure
-- that this analysis is applicable to a group of parallel processors sharing the same set of

threads).
The scheduling of the communications media is more problematic. TDMA is very

inflexible; dynamic collision based ethernet protocols although theoretically predictable9

cannot yet be recommended. A software token bus protocol would seem the best compromise.
* It can be analysed and can be integrated with the allocation and node scheduling activities. If

fault-tolerance is also to be addressed then some form of atomic broadcast will be needed.
This will also have consequences for scheduling.

It seems increasingly likely that DSGM (distributed shared global memory) will play an
increasingly important role in distributed real-time systems. The performance and applicability

* of this technology makes it a genuine alternative to LAN based approaches. Although, in some
ways, such memories can be simply modelled as slow ordinary memory this may not be an
adequate model. More realistic scheduling analysis may be needed.

It is well known that predictions based on a worst case scenario are pessimistic due to
sporadic activities not eccizrring as often as worst case and hardware performing better than
can be relied upon (due to cache and pipelining). The incorporation of "unbounded"
componens into a design (so that they can make use of spare capacity) is currently an active
res.arch topic. Once paradigms are developed then the design methods must allow these new
abstractions to be used directly. We anticipate new object types being added to HRT-HOOD.

Different scheduling regimes will impose different restrictions on the design process.
But it must be the case that the needs of the scheduling theory dictate what the properties of
the design method should be.

To facilitate flexible (static) allocation of objects to nodes it is important that objects in
the design method are not closely coupled. The use of asynchronous thread interaction does
give considerable freedom to the allocation process. But for large systems the complexity of

0 the allocation and configuration activity remains significant. We have had some success at
applying simulated annealing to the allocation activity13 . Clearly tool support is needed.

4. VALIDATION
Formally proving large concurrent systems is beyond current engineering pactice. Testing of

* highly dependable softwi're cannot provide the reliability levels needed. It is therefore clear
that the design method (and process) must itself support validation. The following points will
help bring this about:
(a) Use formal methods to prove the sequential behaviour of objects.
(b) Use asynchronous interactions between threads.
(c) Use scheduling analysis to prove that the end-to-end timing requirements are met.
(d) Use proven (certified) run-time kernels.
The use of preemptive priority based scheduling should allow kernels to be certified.

17

0. m m m |m i

5. PROMISING AREAS OF RESEARCH

It would seem unlikely that funding research in design methods themselves would be effective. 0
Methods need good tool support and a user population to evaluate them. Rather it will be
more cost effective to focus on particular aspects of the problem. We would give top priority
to consideration of how an object (using the term to imply any module structure) interface and
specification can be analysed to give a meaningful prediction of the resource needs of that
object when it is implemented in software. Clearly this issue is linked to that of reusability 0
and cLL-sification; it will &-'&so imply that the notaion used to specify the ir,-eifaze and
specification of the object will need particular expressive power.

Much of the necessary scheduling theory is in place although the ramifications of parallel
architectures requires further study, and the scheduling of the communication media remains
an open issue. But exemplar systems are still rare. The funding of case studies (i.e. 0
implementations), and where appropriate tools, will help demonstrate the power of these
techniques.

6. OTHER ISSUES
It is often the case that the requirement for fault tolerance is added to the list: large, 0
distributed, parallel and real-time. If this is the case then a number of other issues need to be
considered:
o The degree of parallelism may decrease over time (for long life non-stop systems). The

application programmer should not have to program this reconfiguration.
0 Communications must be replicated; either by acknowledgement and rebroadcast (if 9

acknowledgement times out), or by diffusion (sending the message more than once to
start with).

0 Processing elements may need to be replicated. Within a node is easier but does not give
the same fault coverage as replication between nodes. The latter, however, requires some
form of atomic broadcast on the communication media. 0

Although all these issues have been addressed in non-real-time systems, the added requirement
for timely performance significantly complicates the problems involved.

7. CONCLUSIONS
The needs for flexible allocation (configuration) and predictable performance necessitate the 0
use of an asynchronous computational model. On top of this the design method should provide
object types that correspond to the abstraction found in real-time applications. We, in HRT-
HOOD, have used two forms on active object (CYCLIC and SPORADIC) and two forms of
non-active object (PASSIVE and PROTECTED). All communications between active objects
can be remote without effecting the functionality of the code.

Preemptive priority based scheduling (on the multiprocessor nodes), with an equivalent
behaviour on the communication media, gives an appropriate level of flexibility for the
allocation process. It also facilitates analysis of the timing behaviour of the application.

1

18

References

1. European Space Agency, "HOOD Reference Manual Issue 3.0", WME/89-173/1B
(September 1989).

2. A. Burns and A.M. Lister, "An Architectural Framework for Timely and Reliable
Distributed Information Systems(TARDIS): Description and Case Study", YCS.140,
Department of Computer Science, University of York (1990).

3. A. Burns and A.M. Lister, "A Framework for Building Dependable Systems",
Computer Journal 34(2), pp. 173-181 (1991).

4. A. Burns and A.J. Wellings, Hard Real-ime HOOD: A Design Method for Hard Real-
time Ada 9X Systems, Towards Ada 9X, Proceedings of 1991 Ada UK International
Conference, lOS Press (1992).

5. A. Bums and AJ. Wellings, "Designing Hard Real-time Systems", pp. 116-127 in
Ada: Moving Towards 2000, Proceedings of the 11th Ada-Europe Conference, Lecture
Notes in Computer Science Vol 603, Springer-Verlag (1992).

6. C.M.Bailey, A. Burns, E. Fyfe and AJ. Wellings, "Implementing Real-time Systems:
A Case Study", Proceedings CNFS Symposium Real-Time Embedded Processing for
Space Application (1992).

7. J.E. Dobson and J.A. McDermid, "An Investigation into Modelling znd Categorisation
of Non-Functional Requirements", YCS.141, Department of Computer Science,
University of York (1990).

8. H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner and W. Schutz, "The
Design of Real-Time Systems: From Specification to Implementation and Verification",
Software Engineering Journal 6(3), pp. 72-82, Softw. Eng. J. (UK) (May 1991).

9. G. Le Lann, "The 802.3D Protocol: A Variation on the IEEE 802.3 Standard for Real-
Time LANs", Internal Report, INRIA, France (1987).

10. C.D. Locke, "Software architecture for hard real-time applications: cyclic executives
vs. fixed priority executives", Real-Time Systems 4(1), pp. 37-53, Real-Time Syst.
(Netherlands) (March 1992).

11. D. Scholefield and H. Zedan, "TAM : Temporal Agent Model for Real-Time
Distributed Systems.", in Proc. EUROMICRO '90 - Hardware and Software in Systems
Engineering, Sixteenth Symposium on Microprocessing and Microprogrmnming, ed. D.
Fay, Elsevier Science Publishers B.V. (1990).

12. H.R. Simpson, "The Mascot Method", lEE Software Engineering Journal 1(3),
pp. 103-120 (1986).

13. K. Tindell, A. Bums and A. Wellings, "Allocating Real-Time Tasks (An NP-Hard
Problem made Easy)", RealTime Systems 4(2), pp. 145-165 (June 1992).

19

Institute for Defense Analyses (IDA) Workshop on Large. Distributed. Parallel Architecture Real-Time Systems

The Role of Formal Methods in the Design

of Complex Real-Time Systems*

Armen Gabrielian
UniView Systems

1192 Elena Privada, Mountain View, CA 94040
(415) 968-3476

armen@well.sf.ca.us

The design of complex real-time systems which may involve parallel architectures is a difficult task
with no clear-cut solutions. The scientific analysis of the critical issues in this field, however, can
only be realized by the availability of a formal framework for specification of system behavior and
requirements. that abstracts irrelevant details and permits formal analysis. In particular. an executable
specification can be considered as a -causal model" of a system that can be used for verification, as well
as. for testing, fault diagnosis, analysis of scheduling requirements and performance evaluation.
Analysis can reduce significantly the time and cost of evaluating complex parallel systems compared to
the purely experimental approaches. Experimental efforts are still required. however, to validate the
results of the formal analysis and to help determine the most promising research issues. Since
requirements on systems can vary enormously. no single design methodology is guaranteed to be
optimal. A formal framework in which both requirements and system design can be specified precisely
is the key to reducing the development cost and verifying the adequacy of complex designs. The goal
for optimality in this view is replaced by the goal of satisfying a set of pre-specified requirements. An
overview of a particular specification method that meets many of these requirements is presented in this
paper.

1 Introduction

In this paper, we address the following four questions raised in the Call for Papers:

1. What is the best method or methodology for designing large, distributed real-time systems,
where processing elements may have a parallel architecture?

2. What should be the relationship between real-time Design Theory and real-time Scheduling
Theory in a design methodology for this class of systems?

3. What is the best method for validating that large, distributed, parallel architecture real-time
systems behave as specified?

4. Given that resources were available to enhance the design and testing methodologies for this
class of systems, what are the most promising areas where these resources could be applied?

These questions can be addressed from various perspectives. Our approach is to explore the role
that "formal methods" can play in the design of complex and safety-critical real-time systems. As
indicated in [LL92], one can no longer rely on "engineering judgment" to assure safety and other
properties of a design. Also, as predicted in [CK91], in the future, "programmers, tired of
debugging difficulties, will use design methods that produce correct programs as well as formal
methods of proving correctness and methods of integrating proofs and testing." Our goal is to

*This work was supponed in part by the Office of Naval Research under contract N00014-92-C0047.

21

indicate how formal methods can contribute to the establishment of a scientific basis for designing
complex real-time systems. In particular, our contention is that to be able to predict whether a

design is adequate, one must have specifications of the problem and the design. These
specifications must be formal enough to permit analysis of the properties of interest. 0

A formal method is defined here as "a formalism for specifying the properties of a system, in a
way that formal analysis can be performed on it." We adopt a somewhat liberal definition for the
term "formal" in this paper. However, we do not consider simulation, by itself, as a sufficient
criterion for judging a specification formalism to be formal. On the other hand, not all formal
methods provide a simulation capability (or executability). The most promising methods are those
that are both executable and also offer a framework for mathematical analysis of behavioral or
functional properties.

The potential benefits of formal methods are in (1) understanding the requirements and architectural
implications of systems, and (2) in responding to the first three basic question raised above. Our
basic tenet is that by using a formal framework, one can perform the kinds of analysis that are
necessary to evaluate a design and, at the same time, address performance issues regardless of the
types of architectures employed. Considering the difficulties often encountered in performance-
oriented experimentation on actual parallel architectures [H91], the use of formal methods can
reduce the cost of designing systems that must meet hard deadlines and strict performance
requirements. Experimental work is still required, however, to support the formal analysis,
particularly in validating assumption relating to communication delays and execution times of
individual processes.

In the next section, we review the basic concepts of formal methods for real-time systems. In 0
particular, we present a brief outline of the "hierarchical multi-state (HMS) machine" approach to
specification and verification of systems that may involve parallel architectures. In Section 3, we
discuss the benefits of formal methods in addressing questions relating to validation, performance,
scheduling, etc. Finally, in Section 4, we present some conclusions and our recommendations for
the most promising areas that require further expenditure of resources. •

2 Overview of Formal Methods for Real-Time Systems

Numerous formal methods for non-real-time systems have been reported in the literature. The
International Standards Organization (ISO) has accepted SDL, Estelle, and LOTOS as "standard •
formal description techniques." Process algebra, Z and Petri nets are some of the other techniques
that have achieved some prominence, particularly in Europe.

For real-time systems, the main drawback of these methods is the absence of a natural
representation for time. Numerous extensions, however, have been proposed that address this
issue. For example, 1NS921 deals with the temporal extension of process algebra and various
timed extensions of Petri nets have appeared. Another major trend has been to modify temporal
logic to deal with hard deadlines or to add delays in finite-state machine models of processes. A
temporal logic perspective on these issues can be found in [MP92].

The principal problem with most of the formal methods for real-time systems is the inability to deal -
with complexity. For example, state proliferation makes the use of finite-state machine models
difficult, except for relatively simple cases. The use of multiple communication finite-state
machines limits this problem to some extent, but not sufficiently. The most promising state

22 0

representations that address the complexity issue are hierarchical "multi-state" models, in which
multiple states may be active at a particular level of hierarchy. One example is Statecharts [Ha87]
which is used mainly for simulation, another is the HMS machine model to be discussed later in
this section which was originally introduced in a simpler form in [GS87].

A combination of state modeling within a temporal framework seems to be the most promising way
of specifying real-time systems. The standard way of accomplishing this, even for hierarchical
state models, has been to add delays on transitions. This is a highly limited view of time since the
language of delays is simply inadequate for dealing with complex temporal relationships. In
contrast, pure temporal logic, by itself, is not capable of expressing all "regular properties" that are
definable in terms of state models.

A more fundamental problem with all standard specification languages for real-time systems is the
almost exclusive use of "future time" as a basis for defining behavior. Thus, in many formalisms,
individual action are defined in the following form: "if the system is in state s, then if the event a
occurs at time t, the system will move to state s' sometime between t+t1 and t+t2." The inherent
assumption here is that the world is deterministic and the future is predictable. In point of fact, one
of the basic characteristics of a real-time system is that its inputs are unpredictable. To build a
"'causal model" of a system for analysis, the only reasonable assumption is to define what will
happen now or, in case of a discrete model of time, what will happen at the next moment.
Consequently, it appears more natural to use a "past time" temporal language to define a system's
behavior in terms of its history.

The "hierarchical multi-state (HMS) machine" methodology [GF88,Ga9la,GI92] combines state
modeling approach with an interval-based temporal logic to give a comprehensive behavioral model
of complex real-time systems that (1) reduces state complexity compared to traditional state
models, (2) provides a rich language for expressing complex temporal relationships, (3) avoids
assumptions of determinism of future events, and (4) provides executability, as well as the ability
to verify properties such as safety and schedulability. An expressive graphic notation makes the
formalism accessible to a larger audience than many other formal methods and a simple extension
makes possible the specification of unbounded parallelism under temporal constraints.

Informally, an HMS machine H is a triple (S, IFD, FN), where S is a set of "states," FD is a set of

"deterministic transitions," and FN is a set of "nondeterministic transitions." Each state in S is
either a "primitive state" or is an HMS machine itself that may be equivalent to H, in the latter case
giving rise to a recursive hierarchy. Each primitive state is either TRUE or FALSE, thus extending
the standard notion of state in systems theory to a system with possibly multiple true states. Each
transition in FD or FN is a mapping from one subset of states of S (the "primaries") to another
subset of S (the "consequents"). The "fu'ing" of a transition at a moment of time causes its
consequent states to become TRUE, while each primary state becomes false unless it is the
consequent of a transition that fires simultaneously. In contrast to traditional automata theory, the
enablement condition of a transition is defined not by messages but in terms of an interval-based
temporal logic, called TIL. The logic TIL extends propositional logic by the addition of the several
new operators. The main operators are: (1) 0(t) = at time t, (2) It,, t21 = always from tj to t2, and

0 (3) <t,, t2> = sometime from t/ to t2.

The behavior of a real-time system can be defined in terms of an HMS machine by first defining its
attributes hierarchically in terms of states. Secondly, the changes in its states are characterized by

23

transitions. Thirdly, the conditions under which changes occur are specified by TIL predicates.

Consider a process Proc-A that executes for a minimum of 5 seconds as long as an error flag is not
raised and aborts immediately if the error flag is raised. This would be defined in terms two

transitions out of the state Proc-A as in Figure 1. States are denoted by boxes, transitions by dark 0
arrows and predicates by thin arrows using VLSI symbols for boolean operators and an encircled
T for temporal operators. The vertical transition (representing normal termination) is
nondeterministic (labeled with an asterisk) and has the TIL predicate I-5,0]Proc-A A -, ERROR.
The horizontal transition (represendng abnormal termination) is deterministic and has the predicate
ERROR. At any moment of time, one can evaluate the predicates to determine if either transition
must or may fire. The predicates essentially define the causes or permissions for the transitions to
fire. For example, if Proc-A has been active continuously for at least 5 units of time, then the
predicate f-5,0]Proc-A will be true and the process Proc-A may terminate if the state ERROR is not
TRUE. Note that f-5,0]Proc-A will remain true if the transition does not fire immediately and no
deterministic assumptions about the future are necessary. On the other hand, whenever the state
ER&ZOR becomes TRUE, the system aborts immediately. Under most traditional representations,
one would have to rentact the original statement that the process A is to terminate sometime after 5
units of time if the system aborts. In our notation no such retraction is required.

PROC- t Ab- IABORT

r
ERROR

NORMAL

END

Figure 1. Specification of a Simple Real-Time Process

The key questions to be raised about any formal notation in the context of this workshop are: (1)
Can it deal with complexity? (2) How does it address parallelism? (3) What benefits does it
provide? The third question is addressed in the next section. We now turn to the first two
questions.

To deal with complexity, abstraction mechanisms are needed that allow one to express and analyze
relationships at higher levels without concern with lower-level details. Hierarchical decomposition
is one common abstraction mechanism that many methods, including HMS machines, employ. 0
Another mechanism in case of HMS machines is the use of multiple (partial) states to represent the
traditional concept of the state of a system. This can potentially reduce the number of states of a
systems logarithmically. For example, 2 N states in a finite-state machine may be required to
specify a system described in terms of N states in an HMS machine. A third abstraction
mechanism for HMS machines is nondeterminism. In traditional modeling methods such as Petri 0
nets and finite-state machines, nondeterminism arises from structural considerations. For example,
if two transitions from a state are triggered by the same signal, then the choice is made
nondeterministically. In contrast, in an HMS machine, a transition is explicitly designated to be

24

deterministic or nondeterministic. Nondeterminism in this form can be used to capture temporal

uncertainty, specially early in the system design stage. It also serves as the key in relating
specification to scheduling as discussed in the next section. Finally, a fourth abstraction concept
for HMS machines is "multi-level specification," which was first introduced in [GF91]. In a
multi-level specification of a real-time system, a hierarchy of specifications jointly describe the
behavior of a system. The lowest levels normally consist of nondeterministic specifications that
describe a whole class of behaviors. Upper-level specifications employ slightly more complex
versions of HMS machines, called "policy machines," which describe goal-oriented behavior. The
complete specification is obtained by finding paths or "plans" at the lowest level machines that
satisfy higher-level constraints. As a result, a high degree of reusability and modularity of
specifications is obtained. In an experiment in applying this approach to the specification of a
distributed component of a command and control system [Ga9lb], a significant reduction in the
actual specification effort was obtained.

As far as addressing parallelism is concerned, most state-based approaches do not provide any
convenient facilities. One must explicitly model the parallel processes individually and the degree
of parallelism must be known a priori. Preliminary studies have shown that an extended version of
HMS machines may provide a very general approach to dealing with unbounded parallelism. In
the extended version, a state may contain an arbitrary number of "tokens," each representing one of
a set of similar processes associated with the state. With a slight extension of the logic TIL, one
can then obtain a powerful formalism for specifying and reasoning about parallel processes. In
fact, this approach extends the "tagged-token" model of data flow machines proposed in
[AG82,De86] by introducing conditionality and temporal dependencies in data flow operations.

3 Applications of Formal Methods

Given an executable formal specification of a real-time system, various types of analysis can be
performed on it. In addition, limited success has been achieved in using a specification as a basis
for synthesis of an actual implementation. For software, a common approach to synthesis has
been "correctness-preserving transformations" that lead a specification gradually to a program in a
desired language, the execution of which satisfies the requirements indicated in the specification.
For a hardware subsystem, a specification may be transformed, after a set of transformations, into
a hardware description language such as VHDL, from which gate-level logic diagrams may be
constructed. In the remainder of this section, we will address the applications of formal methods
in analysis of specifications.

Since an actual implementation of a system can be a costly and time-consuming process, an
executable specification can be valuable in permitting simulation-based analysis to determine
whether performance related requirements can be met. Historically, the critical problem in
simulation has been the absence of accurate timing information. For air defense, air traffic control
and other application systems, where historical information is available from similar previous
systems, the problem is not too serious. For completely new systems such as SDI and new
computer architectures or operating systems, the problem is much more acute.

An important application of a formal method is in its potential ability to verify formally properties
of a system before it is actually built. For hard real-time systems, most of the interesting

behavioral attributes can be grouped under "safety properties." A safety property is an invariant of
a system expressible in the language of temporal logic as Op (always p), where p is a "past"

25

temporal logic predicate. Given an HMS machine specification of a system and such a safety

property, one can always create a new "system failure (SF)" state such that the state SF becomes

true if and only the safety property is violated. Figure 2 depicts an example, where the safety

property is the deadline condition "always B within 20 time units of A." The vertical bar in the

figure represents a state that always has the value TRUE and the transition fires if A was true 20
time units ago, while B has been FALSE for the last 20 time units.

AB

-201 T T[-20,0]

System Fail1ure]

Figure 2. Representation of a Deadline Safety Property

Assuming that the states A and B are part of a larger specification, to verify the correctness of the
specification with respect to the safety property, it is sufficient to demonstrate that the state SF is
unreachable. In [G192], a refutation-based theorem proving approach was presented for verifying
such safety properties which is complete in the following sense: Given a safety property, if it is
indeed satisfied by the specification, there exists a proof for it. The proof begins with the
assumption that the safety property is violated and reasons backwards to demonstrate that the
assumption leads to a contradiction in all possible realizations. The advantage of the method is that 0
a complete enumeration of behavior is not necessary, in general. Thus, in principle, the proof of a
simple property for even a very complex system could be quite simple. Theorem proving can also
be performed in a forward reasoning form, once again, without the need for complete analysis of
behavior. On the other hand, in an enumeration-based technique, even the verification of a simple
property may require the creation of a complex computation graph. For certain types of properties, •
however, the enumeration-based methods are more suitable than theorem proving methods.

A specification can also be used for analysis of scheduling requirements of processes. In [GF91],
a general method for deriving schedules for concurrent process from specifications was presented.
In this scheme, one begins from the consideration of a nondeterministic HMS machine
specification of a real-time system. Given a partially-ordered set of processes that must be
executed, one can then derive a set of mathematical inequalities that must be solved in order to
satisfy the local logical and temporal constraints. Such an approach can also be used for
verification by demonstrating the infeasibility of schedules for reaching system failure states of the
type indicated in Figure 2.

Finally, a formal specification may be used (1) to develop requirement-based test cases for
evaluation of an implementation and (2) to perform diagnosis of causes of errors. For testing, a
specification of the environment in which a systems is to operate will normally be required, while,
for diagnosis, a backward reasoning process much like refutation-based verification can be used.
No significantly new specification features are expected to be necessary in either case, although
analytic and heuristic techniques are still needed to realize these goals in a realistic setting.

26

4 Discussion and Conclusions

For three reasons, it is our belief that the search for the best design methodology must be
abandoned. First, the requirements of systems can b~e very different. Design method A may be far
superior to deign method B for one application, whereas the opposite may be true for another
application. Secondly, the implementation framework (architecture, operating system,
communication facilities, and programming language constructs) may have a significant bearing on
the quality of a design. Thus, for example, the type of parallelism, the synchronization constructs
and the reliability of the communication systems can affect the performance of a system
significantly. One design methodology cannot be expected to be satisfactory in all cases. Thirdly,
new methodologies always arise that improve upon existing approaches. Thus, the justification for
choosing a methodology even for a very restricted domain may be short-lived.

In the absence of a clear choice for a design methodology, the judicious approach seems LO be
encourage the development of tools and methods that make possible the rapid evaluation of a
design under a set of requirements. Thus, formal methods for specification and analysis of
systems that can deal with complexity, real-time issues, performance and correctness are
recommended areas for further expenditure of resources. The search for optimality of design must
also be given up since it is an impossible and unrealistic goal for large systems. The goal of design
must be limited to meeting requirements under the specified constraints. Optimality is oftcn
undefinable and unattainable.

As far as validation of large systems is concerned, simulatior and formal verification are the most
promising approaches. The basis for both, however, should be a specification methodology that
can lend itself to formal proof of correctness for critical aspects, can deal with systems at various
levels of abstraction, and can avoid the abstruseness that is characteristic of many formal methods.
The use of graphic notation is recommended to deal with the problem of accessibility of formal
methods to a wider audience.

While there exist many verification techniques, it has been our experience that no single method is
universally applicable. Thus, a variety of verification methods must be developed, some of which
may be heuristic and incomplete. For a given system, the best choice of method cannot always be
predicted. A strategy that has been successful in a different context has been to attempt several
different techniques and experimentally determine the best approach for a given problem. In our
experience, theorem proving either in the forward or reverse direction and scheduling-based
analysis have proven to be the most promising formal verification methods. Also, certain
enumeration techniques have shown great promise in haroware verification.

The use of a formal representation of a system can also provide a mechanism to investigate the
relationships between design and scheduling theories. As stated in the previous section. it is
possible to derive scheduling requirements of aperiodic and event-driven processes from a
specification. There exists little experience, however, in actually deriving scheduling strategies
from specifications for large systems.

Our final conclusions can be summarized as follows:

1. There exists no best design methodology. Different methodologies may be preferable under
different requirements and implementation corstraints. Also, rather than seeking an optimal

27

design, the aim should be to create a design that meets requirements. The cost associated

with seeking an optimal design. even if it can be fot, id, may not be woith the effort.

2. A framework is necessary to evaluate a design under an arbitrary set of requirements and

constraints.

3. Formal rirthod.ý for specification that can deal with complexity and provide capabilities for

simulation, verification, automated support for testing and analysis of temporal properties can

offer important benefits in the creation of large and distributed real-time systems.

4. Experimental analysis is needed to st pport and validate the results of formal techniques.

5. The most efficient use of resources will be in the development of integrated methodologies
and tools for rapid evaluation and analysis of designs of complex real-time systems. In
particular, formal methods can providc a common language for specification of requirements, 0
sim'riation, verification, and autonx.ted support for testing. Small experimental laboratories
are Aso necessary to validate the ,:,iyzic methods. For the experimental work, the definition
of a set ,f prototypical examples and benchmarks will be a necessary ingredient. Relatively
modest cxpenditure of resources will be required if this approach is pursued, yet it could
have a major impact o -, he creation of systems that utilize parallel and distributed
architectures and meet opeiational requirement in a cost-effective manner.

References

[AG821 Arvind, and K.P. Gostelow, "The U-interpreter," Computer February 1982, pp. 42-49.

[CK91] Chandy. K.M., and C. Kesselman, "Parallel programming in 2001," IEEE Software,
November 1991, pp. 11-20.

[De86] Dennis, J.B., "Data flow ideas and future of supercomputers," in Frontiers of Super-
Computing. N. Metropolis, D.H. Sharp, W.J. Worlton and K.R. Ames (Editors), U. of
Calif. Press, Berkeley, 1986, pp. 78-96.

[Ga9la] Gabrielian, A., "HMS machines: a unified framework for specification, verification and
reasoning for real-time systems," in Fou'.dations of Real-Time Computing: Formal
Specifications and Methods, A.M. van Tilborg and G.M. L•eob (Eds.), Kluwer
Academic Publishers, Boston, 1991, pp. 139-166 •

[Ga9lb] Gabrielian, A., "'Multi-level specification of command and control systems," Proc.
Command and Control Research, National Defense University, Washington, DC, June
1991, pp. 98-103.

[GF88] Gabrielian, A., and M.K. Franklin, "State-based specification of complex real-time
systems." Proceedings of the 9th Real-Time System Symposium, Huntsville, AL,
December 6-8, 1988. pp. 2-11.

[GF91] Gabrielian, A., and M.K. Franklin, "Multi-level specification of real-time systems,"
Communications of the ACM, Vol. 34, No. 5, May 1991, pp 50-60.

[G191] Gabrielian, A., and R. lyer, "Verifying properties of HMS machine specifications of
real-time systems," Computer-Aided Verification, Lecture Notes in Computer Science
No. 575, K.G. Larsen and A. Skou (Eds.), Spring-Verlag, Berlin. 1992, pp. 421-431.

28 0

[GS87] Gabrielian, A., and M. Stickney, "Hierarchical representation of causal knowledge,"
Proc. WESTEX-87 IEEE Expert Systems Conf., Anaheim, CA, June 1987, pp. 82-29.

[Ha87] Harel, D., "Statecharts: a visual formalism for complex systems," Science of Computer
Programming, Vol. 8, No. 3, June 1987, pp. 231-274.

[Ha91] Howes, N.R., "Real-time Ada design methodologies and their impact on performance,"
Institute for Defense Analysis, Technical Report P-2488, Alexandria, VA, June 1991.

[LL92] Laprie, J.-C., and B. Littlewood, "Probabilistic assessment of safety-critical software:
why and how?" Communication of the ACM, Vol. 35, No. 2, Feb. 1992, pp. 13-21.

[MP92] Manna, Z., and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems -
Specification, Springer-Verlag, New York, 1992.

[NS921 Nicollin, X., and J. Sifakis, "An overview and synthesis of timed process algebras,"
Computer-Aided Verification, Lecture Notes in Computer Science No. 575, K.G. Larsen
and A. Skou (Eds.), Spring-Verlag, Berlin, 1992, pp. 376-398.

29

Unifying Real-Time Design and Implementation

Richard Gerber

Department of Computer Science

University of Maryland

College Park, MD 20742

rich@cs.umd.edu

December 24, 1992

1 Introduction

The realization of a real-time system can often be an ad hoc process of experimentation. Many

0 factors conspire to make this the case, among which are inflexible scheduling paradigms and

the lack of high-level programming language support. Real-time performance is subsequently

achieved by manually counting instruction-cycle times, hand-optimizing the code, and experi-

menting with various orderings of operations to help achieve schedulability.

This problem is compounded by the inherently iterative nature of system design. In the

first step, mission goals are described in a rather informal fashion, and typically in a natural

language. These informal goals are clarified in a requirements specification, and subsequently

expanded into a system specification. This refinement process gradually proceeds until a firial,

0 complete implementation is constructed.
This design approach is replete with potential problems. For example, consider a system

design D and its successor design D'. First, errors may be present in D, and then carried down

to the more concrete design, D'. Second, errors may be introduced in D' that were not present

in D and that may in turn become present in the final implementation.

These problems are especially prevalent in distributed real-time systems, where at each re-

finement stage, assumptions must be made about deadlines, scheduling algorithms, CPU speeds,

clock drift, resource requirements, etc. Such design assumptions rarely hold in the full implemen-

tation, and thus, the real-time system will probably not meet its original mission requirements.

In theory, this process of stepwise refinement should be a natural one, and there should be a

disciplined approach for detecting errors at each refinement stage. In practice, however, no such

* 31

disciplined approach exists for designing large, real-time system. There is often a large schism
between the design and eventual implementation of the system. At the design stage, implicit

assumptions are made about the eventual implementation; for example, its number of resources,

execution speeds, etc.

2 Formal Design and Scheduling

The area of formal methods offers several potential solutions to this problem. Yet while many
formal models of real-time computation have been developed [1, 3, 7, 4, 10, 8, 13, 17, 19], most
treat processes abstractly, quite isolated from their operating environments. This is where the
unrealistic assumptions are made about the system's eventual execution model. Such assump-
tions range from the overtly optimistic (e.g., all executions are instantaneous), to the impractical
(e.g., a one-to-one assignment of processes to processors) to the bleakly pessimistic (e.g., all in-
terleavings of process executions are possible). These assumptions rarely hold in practice, and
using them to reason about a real-time system's temporal properties can lead to incorrect con-

clusions.

Also, there has also been considerable progress in developing scheduling algorithms and
analyzers [9, 15, 16, 18, 20]. In these approaches, the underlying computational model is gen-
erally limited to simple precedence relations between processes where, for the most part, the
effect of process synchronization is ignored. Since complex interactions between processes are
not captured, these approaches cannot be used for proofs of desirable properties other than

schedulability. •
We believe it is essential to unify the area of formal methods and scheduling theory. We have

made a start in this direction with our development of the CSR specification paradigm [5, 6]. The
computation model of CSR is resource-based, in that multiple resources execute synchronously,
while processes assigned to the same resource are interleaved. Resource contention is resolved 0
by a process' current priority. Using this model, we can prove basic properties of the system
design using a proof system, or alternatively, a reachability analyzer.

However, the CSR framework is rather crude, in that possesses a discrete-time model, and
only considers the CPU as a resource. Thus it is becomes cumbersome to reason about large- S
scale, heterogeneous, distributed systems. Certainly more effort is required to investigate the
potential links between formal design and schedulability analysis. The high cost associated with
real-time failures mandates that various design alternatives can be specified and analyzed before
implementation. 0

32

3 The Problem of Programming Languages

Programming language support is needed to help refine a design into an implementation. With-

out high-level real-time languages, programmers are frequently forced to use assembly language

modules for some of the key components of their systems. Recently, experimental languages

have been proposed which provide first-class, real-time constructs [11, 12, 14]. An example of

such a construct is "within 10ms do B," where the block of code "B" must be executed within

10 milliseconds. This constraint is, in turn, conveyed to the real-time scheduler as a directive.

These languages, while providing a convenient framework for ezpressing time in programs,

have done little to ease the process of translating a real-time specification into schedulable

code. Thus, their timing constructs have not been adopted in any production-level programming

languages.

We believe the reason is straightforward: Language constructs such as "within 10ms do B"

establish constraints on blocks of code. However, "true" real-time properties establish constraints

between the occurren'ces of events [2, 10]. These constraints typically arise from a requirements

specification, or from a detailed analysis of the application environment. While language-based

constraints are very sensitive to a program's execution time, specification-based constraints

must be maintained regardless of the platform's CPU characteristics, memory cycle times, bus

arbitration delays, etc.

We have recently taken a new approach to this problem, and our objective is to "bridge the

gap" between specification languages and programming languages. Our approach is to treat

a real-time program as (1) an event-based, timing specification, which represents the system's

real-time requirements; and (2) a functional implementation, that is, the system's code. instead

of constraining blocks of code, timing constructs establish constraints between the observable

events within the code. As an example, consider the following specification fragment, which is

rendered pictorially in Figure 1:

(1) The motion-sensor emits obj-coords on port p.

(2) Transformation function F converts obj.coords into next.-cmd for controller.

(3) The controller receives next..cd on port q.

(4) To achieve steady state, transmission of next.cad is made no earlier than 3.5 ms after

receipt of obj.coords.

(5) To guarantee response-time threshold, transmission of nezt.cmd is made no later than 4.0

ms after receipt of obJcoords.

33

gfoet m then or equal to 3.5 me

fro.... Io

Figure 1: Event-Based Specification of Sensor-Controller System

We claim that the following program fragments should realize the specification:

/* Program A o//* Program B *
do do

receive(p,obj..coords); f
start after 3.5 mas finish within 4.0 ms receive(p,obj..coords);

f next-cmd = F(obj..coords);
next..cmd = F(obj..coords);
send(q,next..cmd); start after 3.5 ma finish within 4.0 ma

I send(qnex-cmd);

The "send" and "receive" operations are the system's only observable events. The "do"
statement establishes timing constraints only between these two operations. On the other hand,

the local statement "nozt-.clad a F(obJ..coords)" is only constrained by the program's natural

control and data dependencies.

Armed with this interpretation, we consider both programs as having equivalent semantics!
This is quite different from the approaches mentioned above, where timing constructs establish
constraints on code. In that interpretation, program A would first receive its data, then delay
for 3.5 ms and finally, evaluate F and send the result within the remaining 0.5 ms. Program B

would receive its data, evaluate F, then delay for 3.5 ms and finally, send the result within 4.0
ms of evaluating F!

Both programs may fail to implement the specification under the code-based constraints. If
F is a CPU-intensive function (and thereby requires over 0.5 ms of execution time), program
A is inherently unschedulable. On the other hand, program B establishes a constraint between
the evaluation of F and the send operation, and not between the two specified events. Both
programs would have to be rewritten to achieve the desired effect. The necessary corrections
would include manually decomposing F, as well as adjusting the timing constraints. The actual
changes would heavily depend on the particular characteristics of the computer, and thus, the
very reason for using high-level timing constructs would be defeated.

34

There are several immediate benefits to this semantics for real-time constructs. First, a

source program is not hardware-specific, and thus maintains the abstract, "portable" spirit of a

high-level language. Since the timing constraints refer only to specification-based events, they

need not be hand-tuned for an individual CPU. Second, this decoupling of timing constraints

from code blocks enables a more straightforward implementation of an event-based specification.

Also, much of the arduous, assembly-language level hand-tuning can now be accomplished

automatically - by compiler optimization techniques. Many of these are code-motion methods

similar to those used in instruction scheduling. Here, however, the objective is to achieve

consistency between the real-time constraints and the execution characteristics of the code.

In doing this we use the observable events as "signposts," which constrain the places where

code may be moved. For example, the local operation "next.cmd - F(obj-coords)" can be

performed during the delay between the two observable events.

Of course, the greatest challenge lies in the optimization of concurrent programs, since it

requires inter-process control-flow analysis. In the end, this problem can be addressed only by

close interaction between the compiler and the real-time scheduler. Again, this requires a tight

relationship between the development environment and a scheduling tool.

4 Where Should Resources Go?

We see both long and short term goals in the unifying real-time design and implementation. Some

very basic technology is required in the short term, such as on-line debuggers and profilers, as

well as static timing analyzers. For example, all real-time scheduling theory assumes that real-

time response can be reasonably bounded, and schedulability analysis is then carried out using

these bounds. Yet no reliable tools exist which can generate these bounds; this is especially true

with modem, complex computer architectures.

In the long term, we believe that formal design methods will pay very large dividends. This

is particularly true for those efforts aligned with implementation efforts. The "gaps" between

design and implementation occur when software engineers get too far removed from system

implementers. The most successful projects will span all levels of systems development - through

design, integration, testing, operation and maintenance.

References

11] H. Attiya and N. Lynch. Time Bounds for Real-Time Process Control in the Presence

of Timing Uncertainty. In Proc. IEEE Real-Time Systems Symposium, pages 268-284,

35

S

December 1989.

[2] B. Dasarathy. Timing Constraints of Real-Time Systems: Constructs for Expressing Them,

Methods of Validating Them. IEEE Trans. on Soft. Eng., SE-11(1):80--86, January 1985.

[3] J. Davies and S. Schneider. An Introduction to Timed CSP. Technical Report PRG-75,
Oxford University Computing Laboratory, Programming Research Group, August 1989.

[4] M.K. Franklin and A. Gabrielian. A Transformational Method for Verifying Safety Proper-
ties in Real-Time Systems. In Proc. IEEE Real-Time Systems Symposium, pages 112-123,
December 1989.

[5] R. Gerber and I. Lee. Communicating Shared Resources: A Model for Distributed Real-
Time Systems. In Proc. 10th IEEE Real-Time Systems Symposium, 1989.

[6] R. Gerber and I. Lee. A Hierarchical Approach for Automating the Verification of Real-
Time Systems. IEEE Transactions on Software Engineering, 18(9):768-784, 1992.

[7] R. Gerth and A. Boucher. A Timed Failure Semantics for Extended Communicating Pro-
cesses. In Proceedings of ICALP '87, LNCS 267. Springer Verlag, 1987. 9

[8] C. Ghezzi, D. M.dri,-li, and A. Morzenti. TRIO: A Logic Language for Executable Spec-
ifications of Real-T..!,e Systems. Journal of Systems Software, 12:107-123, 1990.

[9] K. Hong and J. Leung. Preemptive Scheduling With Release Time and Deadlines. Real- Time 0
Systems: The Interanational Journal of Time Critical Computing Systems, 1(3), December

1989.

[10] F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-time systems. IEEE
Transactions on Software Engineering, SE-12(9):890-904, September 1986.

[11] I. Lee and V. Geliot. Language Constructs for Distributed Real-Time Programming. In
Proc. IEEE Real-Time Systems Symposium, 1985.

[12] K. J. Lin and S. Natarajan. Expressing and Maintaining Timing Constraints in FLEX. In 0
Real-Time Systems Symposium, December 1988.

[13] N. Lynch and H. Attiya. Using Mappings to Prove Timing Properties. Technical Report
MIT/LCS/TM-412b, Laboratory for Computer Science, Massachusetts Institute of Tech-

nology, 1988.

36

[14] V. Nirkhe, S. Tripathi, and A. Agrawala. Language Support for the Maruti Real-Time

System. In Real-Time Systems Symposium, December 1990.

[15] D. Peng and K.G. Shin. Modeling of Concurrent Task Execution in a Distributed System
for Real-time Control. IEEE Transactions on Computers, pages 500-516, April 1987.

[16] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change Protocols for
Priority Driven Preemptive Scheduling. Real- Time Systems: The Interanational Journal of

Time Critical Computing Systems, 1(3), December 1989.

[17] A.C. Shaw. Reasoning About Time in Higher-Level Language Software. IEEE Transactions

on Software Engineering, 15(7):875-889, 1989.

[181 H. Tokuda and M. Kotera. A Real-Time Tool Set for the ARTS Kernel. In Proc. IEEE

Real- Time Systems Symposium, pages 289-298, December 1988.

[19] V. Yodaiken and K. Ramamritham. Specifying and Verifying a Real-Time Priority Queue

With Modal Algebra. In Proc. 11th IEEE Real- Time Systems Symposium, 1990.

120] W. Zhao, K. Ramamritham, and J. Stankovic. Preemptive Scheduling under Time and

Resource Constraints. IEEE Transactions on Computers, pages 949-960, August 1987.

37

THE IMPACT OF COMPUTER TECHNOLOGY ON
* REAL-TIME DESIGN AND REAL-TIME SCHEDULING

Andre Goforth
NASA Ames Research Center

Moffett Field, CA
94035

andy@ptolemy.arc.nasa.gov
415-604-4809

The workshop on large, distributed, parallel architecture, real-time systems has identified
four major issues regarding the development of these systems. My position is that a fifth issue
underlies these four and must be addressed as part of any solution for the four. This issue is that a
breakthrough in standardization and quantification of computer system services critical to this
class of real-time systems will have to be made and incorporated into the next generation of
methodologies and real-time scheduling theories. The scheduling function and its interface(s) in
a distributed, parallel, real-time setting is one example; the system support for expressing abstract
notions of timeliness and system response above and beyond the conventional concepts of priority
and event is another. Other real-time functions are critical and, no doubt, need to be discussed in
more depth in the workshop. The workshop has identified design methodologists and real-time
scheduling theorists as the two key players in advancing the state of the practice. Because they

* treat themselves as separate disciplines these two groups have worked independently for the most
part. Each real-time design methodology and real-time scheduling approach has their adherents
and critics. Instead of adding to the potential debate between any of these, I submit a corollary to
my position: that all current efforts in developing deployable methodologies and scheduling
approaches for this class of real-time problem are systemically limited. A third key player needs
to be added for design methodology and real-time scheduling theory to have a substantive impact
on the industrial base--the computer technologist.

When we, as users and developers of real-time systems, consider the concept of a large,
distributed, parallel architecture, real-time system, we are confronted with a situation analogous
to that which confronted computer system users and designers of 15 to 20 years ago. At that time,
the use of multiple mini-computers was becoming an alternative to the use of centralized main-
frame computers. Some of the problems then were how to break the work into meaningful pieces
to match the limited performance of a mini-computer and how to orchestrate the processing
globally.

There was much debate and question as to whether such systems were a practical
alternative to centralized mainframe solutions. For a period of time the only workable alternatives
were either to use one vendor's proprietary solution solely or to custom build one's own. Over the
long run these alternatives were not effective because of the lack of flexibility and high cost.
Today the situation is quite similar--the practical way to design and build (real-time) systems is
centralized and to stay close to one vendor's product. However, metaphorically speaking, just
because your only tool is a hammer does not mean every problem is a nail.

39

The obstacle facing pioneers in those days who were looking for flexible and cost effective
solutions was the lack of infrastructure-of standardized network protocols, open systems
software architectures, and modularized hardware interfaces. Regardless of how elaborate their
efforts were in creating design methodologies and computer algorithms for distributed systems,
the results were systemically limited. At some point, the development of new standardized (and
modularized) interfaces was essential-advanced methodology or algorithm development had
reached a point of diminishing returns. For example, in the mid to late 1970s, one key rationale
for developing single user workstations as an alternative to time-shared mainframes was to avoid
the issues of large, complicated and resource intensive operating systems found on the latter. In
hindsight, a good deal of operating systems research and development (along with design
methodologies) of that era became as baroque as they did because they were trying to build
solutions given near impossible conditions.

9
We face this situation today. What can be done about this systemic condition? This

question is equivalent to the fourth workshop issue which is to identify the most promising
technical areas that if funded would improve our capability to design and build such systems. My
answer is that there is an opportunity in this workshop for design methodology and real-time
scheduling researchers to look hard at the shortcomings in current real-time computing engines
that limits the effectiveness of any methodology and any scheduling theoretic approach.

For example, our experiments and performance benchmarks at NASA Ames Research
Center corroborate the findings of Norman Howes as discussed in his paper titleo, 'Toward a Real-
Time Ada Design Methodology". Many methodologies as well as the one explored by Howes are
advanced on the basis of desirable design principles. We have found as did Howes that these
methods when tried on uniprocessors (and on multiprocessors) can lead to elaborate, highly
complex designs that are fundamentally flawed, inefficient or unpredictable in performance. We
conclude that little if any attention is given to quantifying the performance of the results of these
methodologies. The burden does not all rest on the developers of these methodologies; the
computer was a significant accomplice. For example, synchronization primitives failed in special
cases; event timer functions performed erratically; in general, performance of real-time functions
often was affected by the load and ordering of events. We found this to be the case across three
distinct computing platforms/Ada software environments.

Because the technology base for real-time systems is so brittle and quirky there is little 0
incentive for anyone to attempt to develop a methodology that embraces the level of detail
necessary to be of substantive use in a real-time project. Any substantive attempt is tantamount to
the development of a project-specific tool and, as a consequence, little if any long term leverage
is gained. This leads me to the first workshop issue: what methodology would I choose if I had
the responsibility of developing a large, distributed, parallel architecture ral-time system? •

Faced with no alternative of re-scoping the big four requirements-large, distributed,
parallel architecture and real-time--I would be justified to expend engineering resources to
develop a project specific methodology. The methodology would be based on repetitive use of
'cut and try' that was the staple of design approaches used by electronic engineers in the sixties and
seventies. Today, CAD/CAM tools obviate the reliance on 'cut and try' because the physical

40 0

properties (and performance) are thoroughly understood and hence predictable (for a number of
silicon processes and for board level design). We simply do not have a fundamental
characterization of real-time computing engine properties today that we can so thoroughly rely
upon. As a consequence, the first order of business for the project's methodology is to establish
a pedigree of the real-time services of the computing engines that the project can afford. The
second is to find real-time scheduling approaches that the computing engines are capable of
supporting efficiently while meeting system response requirements. At this point I would expend
engineering resources to investigate the augmentation of the project's methodology with desirable
design principles. The goal would be to seek a means of unifying or simplifying the overall design
or, at least, some intermediate levels of the design.

The 'cut and try' approach is one alternative to the third workshop issue: What is the best
* method for validating these real-time systems behave as specified? Whether it is the best is a moot

point; what the best must have is the element of repetitive use of 'cut and try' where the system,
as it is being built up, is incrementally tested against realistic tests cases.

One workshop issue remains: What should be the relationship between real-time Design
* Theory and real-time Scheduling Theory in a design methodology for this class of systems? To

me this is the most problematic issue of all; its resolution is the key to successfully building a new
class of real-time systems, and yet our current attempts to address it are systemically limited by
the current state of real-time services and interfaces. This point was brought up earlier and is my
position for this workshop.

0
In closing, let us consider what should be the relationship if, for example, there was a real-

time computing engine that was capable of supporting a broad variety of real-time scheduling
algorithms equally. By this I mean that the differences in observed performance of different
algorithms would not be dependent on the implementation but rather on the computational
characteristics and complexity of the algorithm. I believe that this would increase substantially the
collaboration between Design Theory and Scheduling Theory researchers.

41

41

Position Paper on Large, Distributed, Parallel

Architecture, Real-Time Systems

Norman R. Howes
Jonathan D. Wood

Computer and Software Engineering Division
Institute for Defense Analyses

1. DESIGN METHODS

During the past three years, we have been considering the problem of what is the best

way to design real-time systems, especially for architectures that have more than one pro-

cessor. We realize that there is probably no one best way. Indeed, there have been a number

of proposals by various authors in the recent literature on the subject of real-time systems

design. At IDA, we are often in the position of giving advise to our sponsors on methods

and techniques to use on real-world projects. Our interest in this area was motivated by our

desire to be able to give sound advice in these situations. We originally did not set out to

develop a new methodology, but rather to determine, which among the many proposed

methods were the most promising.

At the time our investigation started, two methods that were receiving a good deal of

attention were the method of Nielsen and Shumate documented in their textbook [9] and

the DARTS method of Gomaa [6]. While we have read about many methods, we have only

had time to analyses these two in depth in our laboratory. Our experience, based on reading

about other experiments (e.g., [7]), and on implementing both Nielsen and Shumate's and

Gomnaa's examples on sequential and parallel architecture machines and comparing them

with implementations of the same examples designed using other methods, leads us to be-

lieve that the technique used for process (task) structuring, i.e., what your model of concur-

rency is based on, is one of the key issues in the design phase.

43

Both the Nielsen and Shumate method and the DARTS method have been used to de-
velop real-world systems and both methods are evolving (e.g., [10], [11] and [2]). Also,
both methods encompass a good deal more than just process structuring. Both of these 0
methods belong to the class of methods that are extensions of the concepts of structured de-
sign to the field of concurrent real-time systems. Another class of real-time design methods
that is emerging is the class of methodologies based on object modeling (e.g., [1] and [11]).
Based on what we have learned so far, it seems that both of these classes of design methods 0
can lead to designs that are unnecessarily complex. The reason for this is probably easier
to see in the case of object oriented design techniques. The temptation here is to give each
object its own thread of control (process or task). If any of these objects must interact fr-
quently with other objects, it can readily be appreciated that there can be significant over- S
head in task-to-task communication, synchronizaticn, or both.

So far, all of the methods we have looked at in detail, do not have a good way of insur-
ing that objects that must interact frequently are (usually) in the same thread of control. In
fact, many of them have process structuring techniques that seem to encourage placing
strongly interacting objects in different threads of control. This not only leads to inefficien-
cy, it leads to designs that are overly complex, and this has ramifications in the area of in-
tegration testing, validation and maintenance of the system. It seems to us that what is most
needed in these methodologies, is a method for insuring that strongly interacting objects are
assigned to the same thread of control whenever possible.

In our lab work, we experimented with trying to base our concurrency model on the
real-world processes that were occurring in the problem space for which our system was to
operate. The results were improvement of throughput, reduction of number of independent
threads of control and reduction in code size, while maintaining or improving timing be-
havior. Our designs based on this "process modeling" approach also proved to be much
more portable than the other examples. All of our experiments were done in the Ada pro-
gramming language, and we realize that some of the improvement we were seeing can be
attributed to compensating for certain inefficiencies with the current version of the Ada lan-
guage. It is reasonable to believe that in the future, when some of these language inefficien-
cies have been corrected (e.g., with Ada 9X), that the comparison might not be as dramatic.
None-the-less, we believe that the benefits ofproc"m modeling will still be very noticeable
due to the general simplification of design that this method provides with respect to other
methodologies we have studied.

44

2. RELATION BETWEEN DESIGN THEORY AND SCHEDULING THEORY

It is our belief that current real-time scheduling theory is not closely related to most of
the real-time design theories that have been advanced recently. Real-time scheduling theo-
ry is based on the rime-line model that models the time frame in which the real-time prob-
lem is to be solved. Until recently, the time-line model has been so widely used by real-time
practitioners that most of them have identifled this model with reality. .The time-line model
is useful for reasoning about how multiple tasks can be scheduled on a single processor and
about whether these tasks will meet their deadlines. Because of the importance of predict-
ability in real-time systems, these considerations have been considered so critical, that they

0 have dominated real-time design to the point where real-time design is conditioned by
schedulability analysis.

It is common practise in real-time design today to divide the time-line up into time slots
for the various concurrent tasks comprising the real-time system and assigning rime bud-
gets to each slot. These time slots are then scheduled using the time budgets for the task
execution time using some static scheduling algorithm or by manually fitting the slots into
a cyclic executive. The tasks are then designed to try to meet these time budgets. If that
proves to be impossible, then an atempt is made to borrow additional time from the bud-
gets of other tasks that do not need as large a budget as originally assumed. The problem
with the time-line model is that it is not useful for reasoning about some of the fundamental
problems associated with the design of real-time systems, such as what functions of the sys-
tems should be grouped into a separate threads of control. It is not a good abstraction for
reasoning aoout how these individual processes or tasks should be designed, and it does not
generalize well to multiple-processor systems. Furthermore, this approach introduces sig-
nificant overhead in order to insure predictable timing behavior by forcing the design to
comply with an unnatural model.

Instead of just modeling the time frame in which A real-time problem is to be solved (as
with the time-line model), it would be useful to be able to model the problem space in which
the problem is to be solved. The benefits from object oriented design in the non-real-time
problem domain suggest that modeling the problem space yields information that is rele-
vant to how a system shouid be designed. In the past few years, new design methods for
real-time systems have been emerging whose underlying models ame either a generalization
of the time-line model or a replacement for it The earliest departure from Lhe time-line
model seems to have been in the area of fwnction-driven scheduling, e.g., [8] and [13]. Here,
a time value function or an importance function is used to blur or spread the concept of a

S 45

dead-line. Next came the class of methodoiogies that anm an attempt at generalizing the

techniques of swtucured analysis and structured design to the real-time domain, e. g., [6],

[14] and [9]. Thereafter came the class of methodologies that attempt to extend the concepts

of object oriented design to the real-time domain. One recent real-time conference featured

over a half dozen papers proposing various "object oriented real-time methodologies".

Concurrent with the emergence of the object oriented rral-time methodologies was the

emergence of a small number of papers, e.g., [3], [12], [7] and [5] that suggest using a mod-
el similar, but somewhat different to the object model that we will refer to as process mod-

eling.

We believe all of these generalizations and alternatives to the time-line model supply

additional information that may be helpful in the design of real-time systems, but that pro- 0

cess modeling offers the greatest potential. Further, it is our position that real-time design
theory and real-time scheduling theory should have a closer relationship, and that this
should be accomplished by a rethinking of real-time scheduling theory so that eventually it
will support these new design methods. At the present time, real-time scheduling theory is 0

usually based on a number of simplifying assumptions that in effect assume that the sys-
tems, to which the theory is to apply, have already been designed. For instance, they make
the following kinds of assumptions: (1) the (perhaps worst case) execution times of all tasks
are known, (2) most of the tasks are periodic, with the occasional need to handle an asyn- 0

chronous request for service, (3) the deadline., for all tasks are known in advance. As a re-
sult, current scheduling theory does not support current design theory very well, and in
order to use it, one has to allow the design to be constrained by the time-line model.

0
More and more, these new design methods are being attempted with the knowledge that

the determination that the system will behave predictably and meet its timing requirements
will have to be ascertained via testing of the finished design either by prototypes or simu-
lation. While this is a workable approach from a practical point of view, it is somewhat un-

desirable in that there is no underlying (theoretical or mathematical) reasoning about why
the system behaves (with respect to timing behavior) as it does. It is therefore important that
scheduling techniques be developed that support design methods rather than force designs

by means of unnatural models or be employed as forcing functions to force systems de- 0
signed via other models to try to meet the desired timing requirements.

In the dissertation [13] Strayer essentially argues for real time systems without dead-
lines that do the right thing at each instance of time rather than attempt to meet deadlines.

He argues that we can be assured that they do the right thing at each instance of tim be- 0

4 6

0

cause they are function driven designs and his importance functions insure that the system

is doing the most important thing at any instance of time. While we are not entirely con-

vinced by Strayer's arguments, we believe that the approach he suggests would be superior
to trying to meet deadlines, if it can be accomplished via importance functions. One advan-
tage of a system that was designed to do the right thing at any given instant would be that
it would therefore always behave in the best possible way during transient overload.

Strayer's concepts are yet to be proven in the real-world of system implementation and
testing. However, we believe that an approach along these lines my offer real promise. Sev-
eral real-time systems developers that we have talked to, never even try to apply current

• scheduling theory because they believe it to be too restrictive or too unrealistic to merit con-
sideration. Consequently, systems are designed, prototyped, tested, redesigned, retested,
etc. until a workable solution emerges. The problem with this approach is that it is not based
on well understood (perhaps proven) design principles that are supported by scheduling

* theory. Then when requirements change somewhat or when the system is to be redesigned
to meet similar but different requirements, the whole process has to be started over. One
process control company design department we talked to stated that they tried to mitigate
this redesign problem by starting with a similar system if possible, modifying it so that it

* might meet the new requirements and then testing it. By starting at this point they were of-
ten able to save some time with respect to the alternative of starting from scratch.

3. VALIDATING DISTRIBUTED OR PARALLEL DESIGNS

We do not have much of a position on the validation of such systems, primarily because

general experience with validating systems of this class seems to be lacking and our own
experience is limited. However, based on our experience measuring the performance of
small but representative real-time systems on both single and multiprocessor machines, and
redesigning them for better, performance, we believe that the detailed testing of parallel
real-time systems offers a wealth of insight into the (often unexpected) behavior of these
systems. Consequently, we believe that testing will currently have to play the primary role

* in verification of systems of this class.

While we are not very knowledgable in the area of formal methods and proving of pro-
grams, we think that this area has an important role to play in the future of this class of sys-
tems. However, since our experience, and much of the experience of other reseahers are
with languages that do not have provable semantics, we cannot conceive of how parallel

0
47

real-time systems could be validated without extensive testing at the present time. On the

other hand, attempts at the formal specification of such systems still seems desirable be-

cause it provides an unambiguous statement of what the system should do which can pro- S

vide insight into how tests might be constructed to determine if the system behaves as

specified or not. Determining how to construct a test to determine if a parallel real-time sys-

tem meets a specific requirement is often highly non-trivial. Techniques employed for test-

ing of sequential or concurrent systems often do not apply when the system has parallel

threads of control. Our experience, for example, with debuggers on parallel machines is that

they often cannot trace all the threads of control that are executing simultaneously in a

meaningful way. With sequential debuggers the program can be stopped and restarted with-

out affecting the logic of the program. But with a parallel program, what does it mean to 0

stop one of the threads of control while the others continue on? Or what does it mean to

stop all threads of control simultaneously, because in practise, this cannot be achieved.

Validation of parallel real-time code might be undertaken with some sort of"non-intru-

sive" monitor such as the product parasight offer by Encore for their parallel machines. We

have not been able to experiment with this product because our real-time test beds are writ-

ten in Ada and parasight currently does no: work with the Ada language. Basically, the idea

here is that one of the multiple processors is used to gather information in a non-intrusive

fashion (that does not affect timing) about the behavior of the code being executed on the

other processors.

For our purposes, we have found that code instrumentation works well for answering

many of the questions related to behavior of a running system. Our experience seems to in-

dicate that when code instrumentation can be used, it should be designed into the system

from the beginning with a view toward always having it there, because its removal alters

the timing so there are no guarantees that the non-instrumented code will behave exactly as

what was observed in the laboratory with the instrumented code. Our experience indicates 9

that a great deal of information can be learned about the execution behavior of a program

with only a small overhead.

Consequently, our position is that at the current state of the practise, designing code in-

strumentation into the parallel or distributed real-time system specifically for testing if the 0

system meets all or most of its requirements is the best way to do validation. The instru-

mentation code will remain in the system for the life of the system. If at a later time, the

system is changed to meet new requirerents, new instrumentation code will have to be

added to validate these new features, and the system will have to be revalidated. 0

48 0

4. PROMISING AREAS WHERE RESOURCES MIGHT BE APPLIED

* Contrary to popular opinion, we do not believe that it would be profitable to apply re-

sources at this time to support the development of automated design tools for parallel or

distributed real-time systems, because we feel that the design process for this class of sys-

tems is not yet well enough understood to warrant such tools. Such tools would only help

* us to make the same mistakes we are currently making at a faster rate. On the other hand,

we believe that an investment in automated testing tools that would help us better under-

stand the behavior of executing parallel or distributed systems would be a valuable aid in

correcting current design flaws and for learning more about how the behavior of this class

* of systems is modified by using different design techniques.

Currently, we believe that the tools that would benefit a development project for a sys-

tem of this class the most are the classical software engineering tools for configuration

management and project control which are already readily available. Next, we think that
tools that would assist in the simulation and evaluation of design alternatives would provide

the most benefit. Such tools for this class of system are not so readily available. Thereafter,

would come automated tools for testing and validation which also are not readily available.

We believe that both simulation and prototyping are necessary in the project life-cycle for
* this class of systems at the present time. This iterative approach is time consuming and is

where new automated support would provide the most realizable short term gain.

5. REFERENCES

1. A. Agrawala and S. Levi, Real-Tune System Design, McGraw-Hill, 1990.

2. M. Cochran and H. Gomaa, Validating the ADARTS Software Design Method for
Real-Time Systems, Proc. ACM TRI-Ada '91 Conf., San Jose, Oct. 1991, pp. 33
-44.

3. N. Howes and A. Weaver, Measurements of Ada Overhead in OSI-Style Commu-
nication Systems, BEIM Trans. on Software Eng., Vol. 15, No. 12, pp. 1507 -
1517, Dec. 1989.

* 4. N. Howes, Toward a Real-Time Ada Design Methodology, Proc. ACM TRI-Ada
'90 Conf., pp. 189 - 204, Dec. 1990.

5. N. Howes, Real-Time Ada Design Methodologies and their Impact on Perfor-
mance, IDA Paper P-2488, June 1991.

6. H. Gomaa, A Software Design Method for Real-Time Systems, Comm. ACM, Vol.
27, No. 9, Sept. 1984.

* 49

7. S. Hufnagel and J. Browne, Performance Properties of Vertically Partitioned Ob-
ject-Oriented Systems, IEEE Trans. on Software Eng., VoL 15, No. 8, August
1989.

8. E. D. Jensen, The Archons Project: An Overview, Proc. of the International Symp.
on Synchronization, Control and Communication, Academic Press, 1983.

9. IL Nielsen and K. Shumate, Designing Large Real-Time Systems with Ada, Mul-
tiscience Press, Inc., New York, 1988.

10. K. Nielsen, Ada in Distributed Real-Time Systems, McGraw-Hill, New York,
1990.

11. K. Nielsen, Object-Oriented Design with Ada: Maximizing Reusabilisy for Real-
Time Systems, Bantam Books, New York, 1992.

12. B. Sanden, Entity-Life Modeling and Structured Analysis in Real-Time Software
Design - A Comparison, Comm. ACM, Vol. 32, No. 12, pp. 1458 - 1466, Dec.
1989.

13. W. T. Strayer, Function-Driven Scheduling: A General Framework for Expres-
sion and Analysis of Scheduling, Dissertation, University of Virginia, May 1992.

14. P. T. Ward and S. J. Mellor, Structured Development for Real-Time Systems, Vol.
1: Introduction and Tools, Yourdon Press, New York, 1985.

500

50 0

A Timeliness Model For
* Scaleable Realtime Computer Systems

E. Douglas Jensen
Digital Equipment Corporation, Maynard, MA, USA 01754

* Voice +1 508493 1201, Fax +1 508493 5011, Email jensen@ihelix.dec.com

Abstract
Many realtint computer system manufacturers and users need products that are scaleabLe.
which have consistent interfaces, functional components, and development environments;
and which span a wide spectr-m--from small, simple, centralized, tactical subsystems to
large, complex, deceitralized, mission-critical systms. This rcquires realtimn OS's which
are highly scaleable in a number of essential respects, whereas all extant ones are only mod-
estly scaleable. A particularly important, and hitherto intractable, form of realtime OS scale-
ability is the degree of timeliness predictability--i.e., "hardness." The BenefitAccrual Model

0 is a framework that generalizes the traditional special cases of deadlines as time constraints,
and unanimous optinum as the scheduling criterion; this enables timeliness to be scaled-
dynamically--.over a wide spectrum of rtaltire "hardness" and "softness" in a unified way.
Best-effort scheduling algorithms exploit this generality. The progenitor of this timsines
paradigm was creatd in 1977 and introduced in the Alpha decentralized realtime OS kernel
at Carnegie-Mellon University in 1985; the current version is being developed and incorpo-
rated by Digital Equipment into a new version of the Mach 3 kernel for a highly scaleable
realtime Os architecture.

Introduction

Many realtime computer system manufacturers and users need products that are scaleable.
which have consistent interfaces, functional components, and development environments; and

* which span a wide spectrum-from small, simple, centralized tactical subsystems, to large,
complex, decentralized, mission-critical systems, as required by any given application.

Suitably high degrees of scaleability benefit the computer manufacturer, solution supplier,
and user, by lowering software (and thus system) life cycle costs through such benefits as: wid-
er usability; easier portability and investment protection; and improved adaptability to evolving
application needs and technologies--especially valuable in long-life realtime systems.

Realtime software in general, and operating systems in particular, are much more difficult to
make scaleable than is hardware. No extant realtime operating system products are more than
modestly scaleable, at best; different kinds and degrees of realtime needs are met with different
realtime operating systems.

There are many dimensions in which realtime systems and operating systems are more or
(usually) less scaleable; especially important ones include functionality, decentralization, per-
formance, predictability (of timeliness), and fault tolerance. Of these, predictability--often in-
formally called "hardness" and "softness"-is the most technically (and sociologically) chal-
lenging to make scaleable, because it requires an improved perception and understanding of
what "realtime" fundamentally means; an analogy is the improved understanding of gravity
that was required to make certain aspects of physics more scaleable.

The conventional realtime dichotomy of "hard" and "soft" realtime is too oversimplified to

51
Preprint, Pwdiad Deesbg 5, 1992 9.'0V pm IDA

A Timeliness Model for Scaleable Realtime Computer Systems

be scaleable: "hard" as being "deterministic" is an unrealistic special case; and "soft" as being
all other cases is imprecise and ad hoc. This paper describes a basis for describing and manag-
ing highly scaleable predictability of timeliness, over a wide spectrum of "hardness" and "soft-
ness," in a well-defined and unified way: the Benefit Accrual Model. To prepare for the descrip-
tion of this model, we first discuss our understanding of realtime, determinism, and predictabil-
ity. One of the strengths of this model is that it creates the opportunity for employing best-effort
realtme scheduling algorithms, as well as conventional algorithms; an overview of this topic
is provided at the end of this paper.

2 Realtime, Determinism, and Predictability
The traditional realtime viewpoint and terminology arose from the historical emergence of

realtime computing in the context of relatively small, simple, centralized, low-level sampled-
data subsystems. Realtime systems are popularly dichotomized as "hard" versus "soft." "Hard" 9
realtime conventionally is defined as being "deterministic" in the sense that the only critical
computations are those with deadlines, and the scheduling objective is that all these computa-
tions must always meet their deadlines, otherwise the system has failed catastrophically. "Soft"
realtime conventionally is defined as being "non-deterministic" in the sense that missing a
deadline is not necessarily a catastrophic system failure-i.e., "soft" means "not hard:" in some
cases, missing certain deadlines under certain conditions may be acceptable; in other cases, the
time constraints are not really deadlines but preferred times or time ranges. "Predictability" is
commonly regarded as the metric for hardness and softness, although the term is rarely de-
scribed, much less defined. This traditional realtime viewpoint and terminology is too impre-
cise, and the resulting resource management concepts and techniques are too oversimplified,
to be feasibly scaled up for larger, more decentralized systems.

We consider a computing system or operating system to be a realtime one to the extent (this
is not a binary attribute) that time-physical or logical, absolute or relative-is part of the sys-
tem's logic (analogous to errors being states in a fault tolerant system); and in particular, to the
extent that resources are managed explicitly to satisfy the completion time constraints of the 0
applications' (and thus its own) computations, whether statically or dynamically.

Time constraints, such as deadlines, are introduced primarily by natural laws-e.g., physical,
chemical, biological-which govern an application's behavior and establish acceptable exe-
cution completion times for the associated realtime computations. The performance of realtime
systems is evaluated in terms of the magnitude of the time constraints which can be satisfied
with given computing hardware. Specifically, we define timeliness as the metric of how suc-
cessfully the system is able to satisfy its time constraints.

"Real fast" is often confused with "realtime." A computing system or operating system may
satisfy its applications' computation completion time constraints implicitly (by good luck) or
by hardware brute force (e.g., MS-DOS on a 200 SPECMARK computer). Such systems may 0
successfully operate in realtime and (in the latter case) could be rational, cost-effective solu-
tions for certain applications-but by our definition they are not realtime systems, because they
do not employ realtime (time constraint driven) resource management.

Deterministic computation in the realtime context literally means that the computation's tim-
ing and timeliness are known absolutely, in advance [li--there is no uncertainty about any pa-
rameters of the computation (e.g., arrival time, execution duration) and its future execution en-
vironment (e.g., resource dependencies and conflicts due to other computations) which could

52
Jenwn PJvprint-Revised December 5, 1992 9.03 pm IDA 0

A Timeliness Model for Scaleible Realtime Computer Systems

affect its timeliness (at least barring faults, and preferably within acceptable fault coverage pre-
mises). Thus, deterministic scheduling can-indeed, must [2--be done off-line. There are very
few actual realtime applications and systems which (inherently or forcibly) meet this determin-
ism criterion of absolute timeliness certainty-most are subject to some inevitable dynamic
fluctuations and variabilities of computation and communication timing, due to input data ar-
rivals, resource dependencies and conflicts, overloads, and hardware and software exceptions
(not to mention faults, errors, and failures outside the presumed coverage).

We regard a computation's timing and timeliness to be non-deterministic but predictable in
the sense that they can be estimated acceptably; determinism is the maximum, ideal, case [3]
which can only be asymmtotically approached in practice (at several kinds of costs). Predict-
ability implies that all parameter values of the computation (e.g., arrival time, execution dura-
tion) and its future execution environment (e.g., resource dependencies on, and conflicts with,
other computations) are known sufficiently well, and that the computation's timeliness is gov-
erned by processes (particularly the scheduler) whose time evolution is sufficiently well con-
trolled. The degree of predictability is then established according to the application-specific in-
terpretation of "acceptably"-e.g., it may be desired that the estimate be extremely precise in
most instances at the expense of being less so in the remainder, versus being less but equally
precise in every instance.

The timing estimations may be obtained by formal analysis, simulation, empirical measure-
ment, or code examination. The resulting predictability of timeliness (e.g., for response or com-
pletion time) may be expressed in a variety of ways--e.g.: an assured upper bound (a lesser or
least upper bound since any system's timeliness could be said to be predictable by the choice
of one high enough); or in terms of discontinuous rules which relate various execution contexts
to estimated, bounded, or even certain timeliness values (those contexts being ones which are
most likely, or most important, or just most readily relatable to timeliness estimations); or a
probability distribution function of timeliness values.

When the parameters of the computation and its future execution environment are known in
the form of random variables so that their uncertainty is characterized by probability distribu-
tion functions (a reasonable presumption in many cases), the computation's timeliness may be
amenable to stochastic analysis-e.g., the probabilities of execution completion at different
times can be d, i. i ,r Lr-ain si•,',.ons kout L: with deterministic scheduling, many of the
most interesting cases are either known to be intractable or still defy explicit solution). How-
ever, the contexts and thus approaches of stochastic scheduling are predominately oriented to-
ward non-realtime objectives, such as makespan or flowtime [4], which are analytically and
computationally easier than stochastic scheduling to meet due times [5] (and for which there is
greater application demand than from the realtime community).

The parameters of many realtime systems, especially in higher level, larger scale, and more
decentralized contexts, are often too asynchronous-i.e., intermittent, irregular, and interde-
pendent--to have known or tractable probability distribution functions; thus, these systems
must be treated as non-stochastically non-deterministic, for which the scheduling technology
is still in its infancy.

9 Independent of the computation and environment parameters, a computation's timeliness
predictability also depends on the time evolution characteristics of the scheduler. It is normally
taken for granted that realtime scheduling algorithms per se are deterministic even if the pa-
rameters are not. Nevertheless, algorithms in general and scheduling algorithms in particular

53
Jensen Preprint-.&euised Demmber 5, 1992 9.03 pm IDA

A Timelinew Model for Scaleable Realtime Computer Systems

sometimes take advantage (e.g., for simplicity) of making non-deterministic decisions: sto-
chastic schedulers have proven to be successful in certain distributed systems (e.g., [6][7]); and
non-stochastic decision making occurs not only in Petri Nets and certain programming lan- 0

guages, but even in realtime scheduling algorithms (e.g., [8]). Most significant, however, is the
strong tendency for highly physically [9] andlTogically [10] decentralized schedulers to enter
chaotic regimes [II].

Both determinism and predictability are independent of time constraint (e.g., deadline, re-
sponse time) magnitudes--a system may be deterministically, or highly predictably, too slow 0

with respect to some particular time constraint magnitude requirement. Thus, timeliness as a
realtime performance metric includes both the predictability and magnitude dimensions.

According to our definition of realtime, many computing systems are realtime to some rele-
vant degree: slightly--e.g., a payrcoll system which automatically generates the checks on time
(not early or late); a little more so-e.g., disk driver software; considerably more so-.e.g., an 0

OLTP system which automatically performs financial trading based on dynamic market param-
eters; highly-most (but not all) computing normally thought of as realtime.

Furthermore, the realm of realtime computing is broadening beyond traditional low-level tac-
tical subsystems, to include larger, more complex, more decentralized strategic systems for
mission management. This class of realtime application typically coordinates multiple entities 0
which are cooperating adaptively to perform a mission-critical realtime task-such as manu-
facturing a vehicle, repairing a damaged reactor, conducting an air engagement--despite their
individually inaccurate, incomplete views of an inherently dynamic and uncertain application
and system state. Under such circumstances, both the application and computing system soft-
ware (e.g., OS) must make a best effort to accommodate dynamic and non-deterministic mis- 9
sion and resource conditions in a robust, adaptable way so as to undertake that as many as pos-
sible of the most important computations are as acceptable, in the time and other domains, to
the application as possible [9].

There has never been a conceptual or technological framework which could coherently en-
compass all these degrees of realtime. Consequently, realtime computing concepts and tech-
niques for different systems are ad hoc and largely disjoint from each other, which causes these
differences in degree to become differences in kind. This incoherence limits the kinds of real-
time systems that can be built, and the cost-effectiveness of those that are built-in particular,
it impedes the construction of computing systems which are scaleable in degree of timeliness
predictability, and thus in other important dimensions such as functionality, complexity, and 0
decentralization, which require various degrees of predictability.

The developing paradigm of timeliness described here-the Benefit Accrual Model-.offers
a more systematic, general, and realistic framework which we believe can significantly reduce
these limitations of classical realtime perspectives and technology. It provides a comprehen-
sive method for expressing time constraints and scheduling objectives that encompasses a wide 0
spectrum of realtime "hardness" and "softness" in a scaleable, unified way.

3 The Benefit Accrual Model Of Timeliness

Introduction
We consider a realtime computation to be a segment of a computational entity (such a thread, 0

task, or process) subject to a completion time constraint (such as a deadline).
We define a time constraint to be: the specification of: a time period during which completion

54
Jenwi Preprint--Reuied Demmber 5, 1992 9.03 pm IDA 0

A Timelines• Model for Scaleable Realtime Computer Systems

of the realtime computation's execution affects the temporal component of its acceptability;

and that affect (e.g., completing before the deadline is acceptable, and otherwise is unaccept-

able).

A time constraint is manifest in the computation program as a demarcated region of code
whose execution completion time is subject to the time constraint. A computational entity may
include multiple realtime computations-sequentially or concurrently (i.e., nested), as shown

in Figure 1.

-- ----- TC

"- TC2

Figure 1: Time constraints manifest as demarcated code regions

The classical deadline imposes a binary partitioning of a computation's completion time
range into either acceptable (prior to the deadline), or not (after the deadline), as illustrated in
Figure 2. The semantics of "not acceptable" are specific to the computation and application-
e.g., non-productive or counter-productive in some way.

Often non-deterministic execution-time variabilities make it very useful to have "softer"--in
the sense of non-binary-relationships between when a realtime computation completes exe-
cution, and the temporal acceptability of that computation. A realistic example of such a softer
time constraint is that if a particular computation cannot be completed at an optimum time-
i.e., before its "deadline"--then: completing it a little tardy is suboptimum, but better than not
completing it at all; however, completing it very tardy is worse than not completing it at all.
See Figure 3.

The description of this example indicated that the "deadline" was redefined to be the end of
the optimum, rather than the acceptable, completion time zone. The normal definition of dead-
line (Figure 4) would cause popular realtime scheduling algorithms to complete more compu-
tations in the suboptimum zone than was intended by the example soft time constraint. Thus,
such non-binary completion time/acceptability relationships raise questions such as: which
time is best considered the "deadline," and what the other completion delimiting times are; how
are these specified times used for scheduling.

The execution of each realtime computation is not necessarily scheduled to maximize its in-
dividual temporal acceptability. A realtime system (normally) has a multiplicity of realtime
computations which are executed in a partial order according to a scheduling criterion: a col-
lective temporal acceptability criterion for a set of realtime computations, in terms of their in-
dividual time constraints-e.g., the classical "hard realtime" criterion that all realtime compu-
tations meet all their deadlines. In some cases-such as the classical "hard realtime" one-
there is an equivalence between the individual and collective temporal acceptability criteria
(e.g., "each" and "all").

55
Jenern Pftprint---vi&ed Dember 5, 1992 9.03 pm IDA

A Timeliness Model for ScOIUable Realtime Computer Systems

Release Time Run Time Deadline

Acceptable Unacceptable
Completion Completion

Times Times

Figure 2: The classical deadline

Release Time Run Time "Deadlinem

Optimum Suboptimum Unacceptable
'4Completion p Completion Completion

Times Times Times

Figure 3: A "softer" time constraint

Release Time Run Time Deadline

Optimum Suboptimum Unacceptable
Completion p Completion Completion

Times Times Times

Figure 4: Combination deadline and softer time constraint 0

A particular scheduling criterion applied to a particular set of realtime computations may re-
sult in a subset of them whose individual time constraints will/would not be optimally satisfied;
how and when this is resolved is sinuation-specific (the classical "hard realtime" criterion usu-
ally implies this condition is an overload which must be avoided A priori). •

The traditional "hard realtime" scheduling criterion is a single special case which does not
apply to non-binary time constraints, such as those which have multiple completion time zones
or redefined "deadline." "Softer" time constraints-in the sense of non-binary completion time
acceptability-necessitate associated "softer"-in the sense of non-unanimous and non-opti-
mum-scheduling criteria. In the context of our example, the softer criterion is that the maxi- 9
mum possible number of computations complete in the optimum zone, and all the remainder
complete in the suboptimum zone.

Traditional "soft" realtime scheduling criteria are disparate, ad hoc, and imprecise; thus, they
do not offer a basis for systematically expressing scheduling criteria for non-binary time con-
straints. 0

In the Benefit Accrual Model, a time constraint is a generalization of the conventional "hard
deadline" because the conventional "deadline" and "hard realtime" scheduling criterion in-
volve time directly and are well-defined (contrary to the state of conventional "soft" realtime).

The Benefit Accrual Model is based on two concepts: a benefit function, which generalizes 0
the classical "deadline" of a realtime computation; and a benefit accrual function, which gen-
eralizes the classical "hard realtime" scheduling criterion that a set of computations always
meet all its deadlines.

56

Jewnen Preprint--Ruied December 5, 1992 9.03 pm IDA 0

A Timeliness Model for Scaleable Realtime Computer Systems

This model generalizes the author's earlier concept of "time-value function" resource sched-
* uling [12][131, which was first employed in the Alpha realtime decentralized OS kernel [141[15].

Benefit Functions
The urgency-i.e., time criticality-of a realtime computation is expressed in terms of the

benefit it provides to the system as a function fB of the time at which the computation is com-
pleted (see Figure 5). The benefit metric is application-specific and defined system-wide. Ben-

+

benefit

1tme

Figure 5: Benefit function

efit functions are derived by the programmers directly from the requirements and behavior of
the realtime computation (usually an application activity); this is subject to a system-wide en-
gineering process (just as are assignments of classical priorities).

The function fs is unimodal if it is concave downward (we will define that linear functions
are so)-i.e., any decrease in value cannot be followed by an increase--otherwise it is multi-
modal. A multimodal function has at least one instance of a monotonic decrease in value fol-
lowed by a monotonic increase, and thus there are multiple non-contiguous time intervals when
it is better to complete the computation than during the times separating them (see Figure 6).
A multimodal function involves non-linear optimization which is often intractable on-line, so
we do not discuss multimodal functions further here.

b b

Figure 6: Multimodal benefit functions

A computation's benefit function can be changed each time it is released for execution, as
illustrated in Figure 7.

The benefit function time axis is the one the scheduler uses. It may be physical, either abso-
lute ("calendar/wall clock") time-i.e., year, month, date, hour, minute, second, mSec, gSec-
or relative to (since) some past event. Alternatively, it may be logical---e.g., a number which
monotonically increases, but not necessarily at regular intervals. In some distributed realtime
computer systems, time constraints can span nodes, which requires a trans-node time frame
(global clock). The origin of the benefit function axes is the current tine (value of the system
clock) tc, as seen in Figure 8.

57
0 Jensen Pe-prin*-Rsvied Derember 5, 1992 9.03 pm IDA

A Timeliness Model for Scaleable Realtime Computer Systemr

+ •..-M + •

0
b b o

tt

Figure 7: A computation changing benefit functions each release

It may be preferable for an application programmer to express some benefit functions in
terms of a time parameter different from that of the global time axis--e.g.: a computation's
deadline being incremental time units from now, regardless of the axis metric; or a particular
physical absolute time, though the axis is physical relative time-but these differences must
subsequently be translated for scheduling. Translations between physical and logical time
frames are ordinarily infeasible.

Expressing a benefit function relative to a future time/ event, such as the completion of some
other computation, or an external signal, is adding a (generally dynamic) dependency to the 0
time constraint. Dependencies must be accommodated in conjunction with time constraints ac-
cording to some specific scheduling policy, and thus are not part of the Benefit Accrual Model
per se.

The earliest time for which a benefit function is defined is called its initial time t,;the latest
time for which a benefit function is defined is called its terminal time tT (see Figure 8). Some S
systems and scheduling algorithms call for the specification of an indefinitely extended termi-
nal time. A benefit function is evaluated only for values of its time parameter between the cur-
rent time and its terminal time. If ti, e terminal time is reached (tr - tc) and execution of the re-
altime computation has not begun or has begun but not completed, the realtime computation is
aborted and the time constraint is removed from scheduling consideration. If a realtime com- 0
putation is sufficiently likely to complete execution after its initial time, a scheduling algorithm
could choose to begin it before the initial time.

b

t

ttc ft

Figure 8: Initial and terminal times

The later time tL (see Figure 9) is that after which the benefit function value is (monotonical-
ly) non-increasing; thus, completing the realtime computation at or after this time is better. A
benefit function always has a later time. The sooner time ts is that after which the benefit func- 0
tion value is (monotonically) decreasing; thus, completing the realtime computation at or be-
fore this time is better. A benefit function need not have a ts < tT. If its value becomes zero or

58
Jen•n PYuprimt-.-•v&id Deimber 5, 19929.03 pm MA •

A Timeliness Model for Sco leable Realtim, Computer Systems

negative at time tE , t. a benefiL -unction has an expiration time.
• .

tt

++

b b

t

t/ tL tS tE ti tL tT

Figure 9: Later, sooner, and expiration times

It can be necessary for a realtime computation to be completed at a time yielding zero or neg-
ative benefit: early, rather than delaying exe-ution until the greatest positive benefit is expect-

* ed; or tardy, rather than terminating (or not initiating) execution after there is no expectation of
positive benefit. Such cases arise due to dynamic dependencies, when a computation: has been
initiated and cannot be stopped (preempted or aborted) or undone (such as one related to a
physical activity in the application environment); or would block another if not completed, de-
spite its consequential zero or negative benefit.

0 A special case of a sooner time ts is a due time tD, distinguished by the benefit function's first
derivative having an inifinite discontinuity at ts - tz (shown in Figure 10). A deadline is a due
time subject to a collective temporal acceptability criterion which does not allow the due time
to be missed.

A benefit function is defined as hard if it has: a zero or constant negative value before tL; an
0 infinite discontinuity in its first derivative at tL if tL > ti; a due time tD; a constant value between

tL and t,;, and a constant value between tD and tr.

+A

0 b __ __

SI t

tLt tstv tE

Figure 10: Example hard beneft function

The most common meaning of a classical "hard deadline"--a computation which completes
anytime between its initial and deadline times is uniformly acceptable, and otherwise is unac-

59
Jensen Prmprint-evised December 5, 1992 9.03 pm IDA

A nimeliness Model for Scaleable Realtime Computer Systems

ceptably tardy--corresponds in this model to a hard benefit function with deadline tD - tr and

unit binary range {0,I) (Figure 11). Classical definitions of "hard deadline" vary a little: they

b

0
t

tl= tL tS= tD tE= tT

Figure 11: Hard deadline benefit function

generally do not provide for a tL > t,; sometimes the range of this function is {-.,I); a few al-

-orithms define the range as J0, ke), where e is the computation's execution duration and k is
a proportionality factor, many systems allow phases within each period to be arbitrary, while
others require all the phases to be synchronized; most deterministic algorithms, such as rate-
monotonic, require the highest priority ready activity to execute, thus disallowing phase shifts.

All benefit functions which are not hard are soft. Soft benefit functions can have arbitrary val-
ues before and after the optimal value at ts (Figure 12);. they need not have constant values on

b

t

tL ts t'D

Figure 12: Example soft benefit function

each side of tL and t,, or expiration times (Figure 13).
++

0

b - &
t t

tL t tL ts

Figure 13: Example soft benefit functions

A time constraint-and thus benefit function-is made known to the scheduler at its release
time (which is usually a scheduling event).

When the benefit function is released, its initial time may be either the current time-the time
constraint is released at the time it is to take effect (i.e., att-tc)-orafuturetime-thetime

constraint is released in advance (i.e., tý > tc) to improve scheduling (but t1 < tc is a necessary
condition for the computation to complete, if not also begin, execution). See Figure 14.

60

Jensen Pmprintu-Reed D=Fomber 5, 1992 9.03 pm IDA 0

A Timelines Moded for Scaleable Realtime Computer Systems

* + +.

b b

t; t
ttz tc tc t,

Figure 14: Tue initial; time may be either the current time or a future time

Expressing or releasing a benefit function relative to a future time/event, such as the comple-
tion of some other computation or an external signal, is adding a (generally dynamic) depen-

• dency to the time constraint. Dynamic dependencies can require a realtime computation to be
completed at a time yielding zero or negative benefit-for example, when a computation: has
been initiated and cannot be stopped (preempted or aborted) or undone (such as one related to
a physical activity in the application environment); or would block another if not completed,
despite its consequential zero or negative benefit. Dynamic dependencies can require indefi-

* nitely extended function terminal times. Dependencies must be accommodated in conjunction
with time constraints according to some specific scheduling policy, and thus are not part of the
benefit accrual model per se.

Importance
Each computation generally also has a relative importance-i.e., functional criticality-with

9 respect to other computations contending for completion. Importance is orthogonal to urgency:
a computation with high urgency (e.g., a near deadline) may not be highly important; or a com-
putation with low urgency (e.g., a far deadline) may be very important.

Importance may be a functionf1 of time and other parameters that reflect the application and
computing system state, and can be represented and employed similar to urgency (Figure 15).

• I
t

Figure 15: Importance function

In simple cases, importance may be a constant, and urgency (benefit) may be simply scaled
by importance-e.g., by multiplication, addition, or concatenation. In more general cases
where importance needs to be a variable, f5 and f, must be evaluated together dynamically to
determine the benefit-e.g., as some function of thefs andf1 functions, g(fsj,). See Figure 16.

Execution Duration
A realtime computation has an execution duration e which the scheduler usually has some

information about prior to execution. This information can be either known deterministically
(the most common presumption), or estimated. Most estimates are stochastic (known in expec-
tation), but alternatively may be non-stochastic--e.g., bounds or rules. Execution duration in-

61
Jensen Prrprian--RMevid Deember 5, 1992 9.03 pm IDA

A Timeliness Model for Scaleable Realtime Computer Systems

+ F+B(4,4

b b

t t

Figure 16: Scaled and functional combination of benefit and importance

formation may or may not take into account a forecast of dynamic dependencies. Non-deter-

ministic durations may be estimated dynamically (during the computation's execution)-e.g.,

conditional probability distributions, or execution-time knowledge-driven rules.

Benefit Accrual Functions

The scheduler considers all released time constraints between the current time and its horizon

tw-the future-most terminal time (Figure 17). It assigns the estimated execution completion

times, and consequently the initiation times and ordering, for those computations using an al-

gorithm which seeks to sufficiently satisfy the scheduling (collective temporal acceptability)

criterion (such as earliest-deadline-first for the classical "hard realtime" criterion of all compu-

tations meeting their deadlines). The algorithm should also take into account dependencies and
importances.

÷2, 7ý

t

t tH =tT 3

Figure 17: The 8chedu/e" considers all released benefit functions to its horizon

It is feasible to schedule a particular set of realtine computations if its collective temporal
acceptability criterion can be sufficiently satisfied. A particular set of realtime computations is
schedulable if there exists at least one algorithm which can feasibly schedule it. A scheduling
algorithm is optimtal if it always produces a feasible schedule whenever. in the static case, any
other algorithm can do so; in the dynamic case, a static algorithm with complete A priori knowl-
edge would do so.

The ideal case of every computation always completing execution at an optimum time is un-
realistic in general. Even though the traditional "hard realtime" cases are intended---and com-
monly imagined---to achieve this ideal, physical laws (especially in asynchronous decentral-
ized systems) or the intrinsic nature of the applications (especially at mission management lev-
els) generally make it non-cost-effective or even impossible.

Most actual realtime systems desire a sufficient number of computation completion times to
be sufficiently likely to be sufficiently acceptable (perhiaps optimal) under the current applica-
tion and computer system circumstances. 0-

For the special case of any collective temporal acceptability criterion defined to be a unani-
mous optimum of the indi-vidual temporal acceptabilities, there is an equivalent criterion de-

62

JMWn PreprWn--Revilid Deoember 5, 1992 9.) Wpm IDA--

A Tumeliness Model for Scaleable Realtime Computer Systems

fined in terms of individual, rather than collective, optimurs--e.g., meet all deadlines means

meet each deadline, and maximize all benefits means maximize each benefit.

In general, collective temporal acceptability is not defined as necessarily unanimous or opti-

mum with respect to the individual computations' temporal acceptability--e.g., minimize the
number of missed deadlines, or maximize the sum of the benefits.

In the Benefit Accrual Model, collective temporal acceptability criteria are based on accruing
benefit from the individual computations in a set, in a manner specified by a benefit accrual
function for that set. This is general enough to encompass a wide range of temporal acceptabil-
ity criteria--e.g.: the optimum cases such as traditional "hard realtime," for which the function
is the product of the individual benefits (assuming the usual range of {0, 1 }); potentially sub-
optimum cases, for which example functions are to maximize the sum (mean, etc.) of the indi-
vidual benefits; the number of computations during a time frame T which achieve at least P per-
cent of their maximum possible benefit; the probability that at least P percent of the computa-
tions during a time frame T will achieve their maximum benefits. Collective temporal accept-
ability criteria can be employed for scheduling or performance evaluation.

4 Best-Effort Scheduling

Introduction
Scheduling principles and practices which are realtime by our definition (i.e., based on satis-

fying completion time constraints) have until recently been focused exclusively on guarantee-
ing that a unanimous optimum scheduling criterion will be met (e.g., the classical "hard real-
time" case of guaranteeing that all deadlines are always met). Even though the traditional "hard
realtime" cases are intended-and commonly imagined--to achieve this ideal, physical laws
(especially in decentralized systems) or the intrinsic nature of the applications (especially at
mission management levels) generally make it either non-cost-effective or impossible (there
are only a few exceptions).

In general, realtime systems need a sufficient number of computation completion times to be
sufficiently likely to be sufficiently acceptable (perhaps optimal), given the current application
and computer system circumstances (perhaps over a wide range of such circumstances)-
where each instance of "sufficient" is application-specific.

The Benefit Accrual Model provides a framework for expressing "softer" time constraints-
in the sense of non-binary completion time acceptability-and scheduling criteria-in the
sense of non-unanimous and non-optimum. It accomplishes this in addition to--and in the
same manner as--the conventional "hard" time constraints and scheduling criteria. These soft-
er needs are realized with best-effort scheduling algorithms

Best-effort (BE) realtime scheduling algorithms aggressively seek to provide the "best"---as
specified by the application- computational timeliness they can, given the current application
and computer resource conditions. Best-effort resource management is generally heuristic-a
familiar approach at the application levels (most conspicuously in artificial intelligence, pattern
recognition) and less visibly at the system software levels. Because heuristics are essentially
foreign in traditional realtime systems, we employ the term "best effort" to more clearly evoke
our intended departure in philosophy---analogous to the utilization of the term "guess" [16) for
inferences performed by certain intelligent user interfaces, e.g., [17].

Heuristics in general, and best effort realtime resource management in particular, involve
trade-offs of risk management and situational coverage. Best-effort on-line realtime scheduling

63

Jensen Pmprint-Revaied Deoember 5, 1992 9.03 pm IDA

A Timeliness Model for Scaleable Realtime Computer Systems

heuristics currently offer empirically-based high confidence that acceptable computational
timeliness will be achieved over a broad range of conditions; but with no or low formal bounds
on guaranteed timeliness (note that this is necessarily always true of the humans currently per-
forming best-effort resource management). Conversely, traditional "hard" realtime scheduling
algorithms provide formal guarantees of optimal computational timeliness under extremely re-
stricted-generally unrealistic--conditions, but behavior which is unknown or known to be
pathologically wrong outside those conditions. Examples of applications which seem to call
naturally for each of these extremes come immediately to mind-but in making the trade-offs 0

and compromises to find an application-specific appropriate middle ground, one must beware
of the human trait to undervalue the reduction, as opposed to the elimination, of risks [18].

Overview of Best-Effort Realtime Scheduling Work
This concept, and the Time-Value Function progenitor of the Benefit Accrual Model as a

framework for expressing time constraints, were originated by Jensen [12][13]. The first gener-
ation of BE-on-line (at execution time)-scheduling algorithms emerged from Jensen's Ar-
chons Project at CMU [19], for the Alpha realtime decentralized OS kernel [14]: Locke's algo-
rithm M7] and Clark's algorithm [8].

Locke's algorithm allows a wide variety-but not all forms-of Time-Value Functions .
(TVF's). Locke intends that importance be reflected by scaling the TVF values. The scheduling
optimality criterion is the special (but reasonable) case of maximizing the sum of the job values
attained. Execution times are defined stochastically.

The algorithm schedules jobs Earliest-Deadline-First (EDF) since that is optimal when under-
loaded. If a job arrival, or execution time overrun, results in a sufficiently high probability of
overload, jobs are set aside in order of minimum expected value density (expected value/ex-
pected remaining execution time) until the probable overload is removed.

Locke's algorithm does not address dependencies (e.g., precedence, resource conflicts).
Locke used simulations to demonstrate that his algorithm performed well in comparison to

others for a number of interesting overload cases, but provided no formal performance charac- 0
terizations. Versions of Locke's algorithm have been implemented and experimentally verified
to be superior and cost-effective with respect to traditional realtime scheduling algorithms for
a number of interesting cases. In the Alpha realtime distributed OS kernel, these included: a bat-
tle management application for air defense, by General Dynamics and the Archons Project at
CMU [20]; aId a ball-and-paddle realtime scheduling evaluation testbed by the Archons Project 0
[21]; the Alpha version also added nested time constraints and timeliness failure abort process-
ing. Locke's algorithm was implemented In the Mach 2.5 OS kernel, and measured on a syn-
thesized realtime workload by the Archons Project [22].

Clark's algorithm makes a major contribution by dealing with dependencies (e.g., prece-
dence, resource conflicts) which are not known in advance. It employs the same scheduling op- 0
timality criterion as Locke's. Clark permits only rectangular TVF's, whose value is the job's
importance. Job execution times are both fixed and known.

Clark's algorithm selects jobs to be scheduled in decreasing order of value density (VD), and
then selected jobs are scheduled EDF-for the TVF's he allows, this both meets all deadl,-es
and maximizes summed value. When each job is scheduled, so are those on which it depends.
If necessary, precedent jobs are aborted or their deadlines are shortened (whichever is faster),
to satisfy the deadline of the dependent job.

Clark used formal analysis and simulations to show that when overloaded, if the algorithm

64
Jensen Preprint--Revised Deemmber 5, 1992 9.03 pm IDA

A T•meliness Model for Scaleable Realtime Computer Systems

can apply all available cycles to jobs that complete, no other algorithm can accrue greater value
• given the current knowledge; but since future jobs are unknown, there is no performance guar-

antee. Clark's algorithm is being implemented in both the Alpha and Mach 3 OS kernels.
A second generation of on-line BE algorithms is being devised as part of a recent multi-uni-

versity effort to establish formal performance bounds for on-line algorithms in general and cer-
tain BE ones in particular [23][24][25]. Their work is focused on the competitive factor, which
measures the value an algorithm guarantees it will achieve compared to a clairvoyant schedul-
er.

Like Clark's, their algorithms allow only rectangular TVF's, and (mostly) require both fixed
and known execution times.

The principal result is that if all values are proportional to execution time, an on-line algo-
rithm can guarantee a competitive factor of no more than 1/4. The performance bound is lower
when value is not proportional to execution time, or the ratio of maximum to minimum VD in-
creases, or execution times are not fixed and known.

This confirms the intuition that realtime performance guarantees are impossible if workload
characteristics are unknown. However, the most recent research suggests that acceptable per-
formance assurances may be possible when limited, reasonable, workload information is
known; learning and understanding such trade-offs is one of the most important advances still
to be made for BE algorithms.

Maynard's thesis [26] is improving the understanding of the overload behavior of on-line re-
altime scheduling algorithms, and developing techniques for defining benefit functions to yield
desired overload behavior. Its scope includes BE schedulers that use benefit density as the load
shedding criterion. The work to date provides an algorithm for setting job importance values
to impose a strict priority ordering among selected groups of jobs. This allows integration of
results from off-line schedulability analysis, to both provide "guarantees" when necessary and
possible, and retain the adaptability of dynamic scheduling. His simulations support the valid-
ity of the approach. He is also creating tools which help the system designer select and adapt

* suitable scheduling algorithms for specific applications, and choose appropriate job importance
values.

The most closely related work to BE realtime scheduling is Cost-Based Scheduling for queue-
ing and dropping network packets [27]. In this context, a cost function specifies the cost per unit
length of queuing delay for a packet as a function of time. Packets are limited to non-decreasing
cost functions.

Unlike BE processor scheduling, which create a whole schedule, the cost-based network al-
gorithm queues the next packet which it estimates would cost the most to delay. Cost is calcu-
lated using a estimation of future cost that would be incurred, which is the same for all packets.
The optimization objective is to minimize the average delay cost incurred by all packets. De-
pendencies are not considered, but explicitly recognized as critical.

Their simulations show that the algorithm performs well compared to the standard packet
queuing algorithms, and to Locke's algorithm, for packets averaging unit length, in near fully
loaded conditions. The premises of this work do not correspond well to the workload charac-
teristics of interest for best-effort realtime computation scheduling.

In addition to this on-line research, a first generation of off-line BE algorithms is being de-
vised in France [28][29].

Benefit functions employ more application-supplied information, and thus exact a higher

65
Jensen Prepint-Rcuioed DWefmber 5, 1992 9.03 pm IDA

A Tdumlinw Model for Scaleable Rea•tme Computer Systems

computational price than when little such information is used (e.g., by static priority) or no in-

formation is used (e.g., by round robin). Best-effort realtime scheduling algorithms utilize

more application-supplied information than is usual, and place specific requirements on the @

kind of scheduling mechanisms that must be provided (i.e., in the OS kernel--cf. those of the

Alpha kernel).
These prices can be minimized by good engineering, and then paid in different ways, includ-

ing with inexpensive hardware: higher performance processors; a dynamically assigned pro-

cessor in a multiprocessor node; or a special-purpose hardware accelerator (analogous to a 0

floating-point co-processor) in a uniprocessor or multiprocessor node.

5 Acknowledgments

This work was funded in part by the USAF Rome Laboratories and the USN Surface Warfare
Center, as well as by Digital Equipment Corporation. 0

The author gratefully acknowledges his helpful discussions with Ray Clark, Mike Davis,
Alan Downing, Ira Goldstein, David Maynard, and John Peha.

6 References

[1] Lawler, E.L., J.K. Lenstra, and A.H.G. Rinnoy Kan, Recent Developments in Deterministic

Sequencing and Scheduling: A Survey, Deterministic and Stochastic Scheduling, M.A.H.
Dempster et al. (eds), D. Reidel, 1982.

[2] Xu, J. and D.L. Parnas, On Satisfying Timing Constraints in Hard-Real-Time Systems, Proc.
ACM SIGSOFT '91 Conference on Software for Critical Systems (and ACM Software En- 0
&ineering Notes), December 1991.

[3] Pinedo, M., On the Computational Complexity of Stochastic Scheduling Problems, Deter-
ministic and Stochastic Scheduling, M.A.H. Dempster et al. (eds), D. Reidel, 1982.

[4] Weiss, Gideon, Multiserver Stochastic Scheduling, Deterministic and Stochastic Schedul-
ing, M.A.H. Dempster et al. (eds.), D. Reidel, 1982. 0

[5] Gifford, T., Algorithms for Stochastic Scheduling Problems with Due Dates,

[6] Glorioso, R.M. and F.C.C.Orsorio, Stochastic Automata Models in Computer and Commu-
nication Networks, Ch. 9 in Engineerina Intelli2ent Systems, Digital Press, 1980.

[7] C.D. Locke, Best-Effort Decision Making for Real-Time Scheduling, Ph.D. Thesis, CMU-
CS-86-134, Department of Computer Science, Carnegie Mellon University, 1986. 0

[8] R.K. Clark, Schedulin2 Dependent Real-Tune Activities Ph.D. Thesis, CMU-CS-90-155,
School of Computer Science, Carnegie Mellon University, 1990.

[9] Jensen, E.D., Asynchronous Decentralized Computer Systems, Proceedings of the NATO
Advanced Study Institute on Realtime. Springer-Verlag, 1993. 0

[10] Jensen, E.D., Decentralized Control, Distributed Systems: An Advanced Cours , Springer-
Verlag, 1981.

[11] Hogg, T. and B.A. Huberman, Controlling Chaos in Distributed Systems, Transactions on
Systems- Man, and Cybernetics, IEEE, November/December 1991.

[12] Stewart, B., Distributed Data Processing Technology. Interim Report Honeywell Systems 0
and Research Center, March 1977.

[13] Jensen, E.D., C.D. Locke, and H. Tokuda, A Time-Value Driven Scheduling Model for Real-

66

jenwn PrePrint-Revised Decembe 5, 1992 9.03 pm IDA •

A Timelinew Model for Soaleable Realtime Computer Systems

Time Operating Systems, Proceedings of the Symposium on Real-Time Systems, IEEE, No-

vember 1985.

[14] Northcutt, J. D., Mechanisms for Reliable Distributed Real-Time Operating Systems-The
Alpha Kernel, Academic Press, 1987.

[15] Clark, R.K., ED. Jensen, and F.D. Reynolds, An Architectural Overview of the Alpha Real-
Time Distributed Kernel, Proc. of the USENIX Workshop on Microkernels and Other Kernel

0 Architectures, April 1992.

[16] Myers, B.A., Demonstrational Interfaces: Step Beyond Direct Manipulation, Computer,
IEEE, August 1992.

[17] Huff, K. and V. Lesser, Knowledge-Based Command Understanding: An Example for the
Software Development Environment, TR 82-6, Computer and Information Sciences, U. of

0 MA, 1982.
[18] D. Kahneman, P. Slovic, and A. Tversky (Ed.), Judgement Under Uncertainty: Heuristics

and Biases, Cambridge University Press, 1982.

[19] Jensen, ED., The Archons Project: An Overview, Proceedings of the International Svmpo-
sium on Synchronization, Control, and Communication, Academic Press, 1983.

(20] Maynard, D.P., S.E. Shipman, R.K. Clark, J.D. Northcutt, R.B. Kegley, B.A. Zimmerman,
and PJ. Keleher, An Example Real-Time Command. Control. and Battle Management A-
plication for Alpha, Technical Report TR 88121, Archons Project, Computer Science De-
partment, Carnegie-Mellon University, December 1988.

[21] Northcutt, J.D., R.K. Clark, D.P. Maynard, and J.E. Trull, Decentralized Real-Time Sched-
"_.., Final Technical Report, Contract F33602-88-D-0027, School of Computer Science,
Carnegie-Mellon University, February 1990.

[22] Tokuda, H, J.W. Wendorf, and H.Y. Wang, Implementation of a Time-Driven Scheduler for
Real-Time Operating Systems, Proceedings of the Real-Time Systems Symposium, IEEE,
December 1987.

[23] Wang, F. and D. Mao, Worst Case Analysis for On-Line Scheduling in Real-Time Systems
Dept. of Computer and Information Sciences, Univ. of MA, June 1991.

[24] Baruah, S., G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and F.
Wang, On the Competitiveness of On-Line Real-Time Task Scheduling, Proc. Syrp. on Real-

* Tue Systems, IEEE, December 1991.

[25] Koren, G. and D. Shasba, D0fw: An Optimal On-Line Scheduling Algorithm for Overloaded
Real-Time Systems, TR-594, Computer Science Dept., New York University, February
1992.

[26] Maynard, D.P., Understanding and Controlling Overload Behavior With Best-Effort Sched-
Sulers. Ph.D. thesis, Carnegie Mellon University, Department of Electrical and Computer En-

gineering, 1993 (in preparation).

[27] Peha, J.M. and F.A. Tobagi, A Cost-Based Scheduling Algorithm to Support Integrated Ser-
vices, Proc. IEEE Infocom, April 1991.

[28] Chen, K., A Study on the Timeliness Property in Real-Time Systenw., Real-Time Systems,
September 1991.

[29] Chen, K. and P. Muhlethaler, Two Classes of Effective Heuristics for Time-Value Function
Based Scheduling, 12th Real-Time System S=mposium, 1991.

67
* Jensen Peprinnt.-Revied December 5,1992 9.:3 pm IDA

WHY SHOULD WE KEEP USING PRECAMBRIAN DESIGN

APPROACHES AT THE DAWN OF THE THIRD MILLENIUM ?

Position paper prepared for the Institute for Defense Analyses Workshop on Large, Distributed,
Parallel Architecture Real-Tine Systems, Alexandria, VA, March 1993

G&ard ie Lann, INRIA

BP 105, 78153 ie Chesnay Cedex, France

Gerard.Le_Lann@inria.fr

1. INTRODUCTION

Too often, designers argue about merits of their favorite approach, about drawbacks of other
approaches, without addressing the fundamental underlying issue:

what is the rationale for adopting a particular design approach ?

System design can be/should be as rigorous as demonstrations in Mathematics. There are obvious
analogies shown table 1.

Too often, careful examination of published solutions/methodologies reveal logical
contradictions. For example, design solutions are antagonistic with what should be the
appropriate computational model (sometimes, this happens because the model is not even
described !). Two examples :

- the priority ceiling protocol is non-sense in the context of distributed systems ; one of the
reasons is that it rests on the assumption that processes may observe the global system state
(e.g. via a global semaphore) which is known to be unfeasible in distributed systems

- the IEEE 802.4 (token-bus) LAN standard is based on a violation of the design premises;
collisions are ruled out, therefore the token-passing solution ; nevertheless, designers had to
provide for collision detection and resolution -- because of token loss and virtual ring
reconfiguration ; doing something equivalent in Mathematics, i.e. demonstrating a theorem
that violates an axiom, is very embarassing !

Careful examination may also reveal tautologies. Consider the atomic broadcast problem. Atomic
broadcast guarantees that non-faulty processors see identical histories of (possibly concurrent)
broadcasts, i.e. no loss and identical orderings. The ISIS ABCAST protocol is supposed to be a
solution. In fact, this protocol is incorrect if the underlying (physical) broadcast sub-system is not
atomic itself ! So, what is added by ABCAST, besides overhead ?

Finally, careful examination may reveal severe design flaws. A very important example is that of
distributed scheduling based on fixed (computed off-line) priorities. This naive --and erroneous--
approach is derived from the rate monotonic/deadline monotonic methodologies. These
methodologies are sound and should be used in their intended context whenever appropriate,

69

0

namely single processor fault-free architectures running periodic (or sporadic) tasks, _
characterized with simple timeliness attributes (i.e. deadlines, all tasks have the same value). In

the context of such simple computational models, timeliness attributes can be rigorously
transformed into time-independent (fixed) priorities, using the RM or DM methodologies.

However, there is no equivalent methodology for distributed architectures (i.e. richer, more
complex, but also more realistic computational models). Hence, in the case of real-time
distributed systems, designs and solutions that are based on fixed priorities are barely interesting,
because the following (very difficult) issue is left open : how to transform distributed task

timeliness attributes into integers so that the set of specified system-wide timing constraints are

provably met ?

A real-time distributed system designer who would use fixed priority based scheduling has no 0

means to demonstrate that he is solving the originally stated problem. Who would trust the
resulting system ?

Let us be clear. We are not claiming that the rigorous design/implementation cycle shown table 1
is always feasible. There are instances of system objectives/requirements whose complexity raises
design problems that are beyond the reach of current state-of-the-art in Computer Science. When
faced with such problems, we are forced to use (<pragmatic)) approaches (e.g. heuristics, testing in
lieu of proofs/validation, etc.), until state-of-the-art matures.

However, it is our view that too often, designs are poorly/erroneously conducted, not because
state-of-the-art is limited but because state-of-the-art is ienr -

2. RATIONALE FOR A CORRECT COMPUTATIONAL MODEL IN THE
CASE OF LDPART SYSTEMS

Our purpose is to show how one can arrive at a rigorous identification of a correct computational
model intended for designing Large Distributed, Parallel Architecture Real-Tune (LDPART)
Systems.

We proceed by identifying the implications (noted I) of the stated system objectives/requirements.

I1• distribution/parallelism -+ concurrency
Synchronous or asynchronous concurrency ?

12: large (systems) -- probably asynchronous concurrency

13.1 : real-time -+ fault-tolerance -
Faults are stochastic events. Hence, 13.1 combined with 11 yields a confirmation of 12.

= Conclusion # 1: asynchronous concurrency

In passing, let us notice the following reciprocal implications:

fault-tolerance -4 redundancy

fault-tolerant redundancy management -- distribution/parallelism

7

70

13.2: real-time -4 scheduling
Off-line or on-line scheduling ?

Conclusion #1 precludes clairvoyance (full knowledge of the future system/environment histories

such as external event ar-ival laws, inter-task conflicts, etc.).

: Conclusion #2 : on-line scheduling.

Let us now examine the proof/validation issue. Simply stated, there are two schools of thought, or
two major design approaches.

One of them, called the static design approach (S), rests on clairvoyance assumptions. Critical
attributes of a LDPART system constitute a multidimensional space [external event arrival laws,
task durations, fault c<arrival laws,,, internal event (e.g. message) arrivals laws, shared resource
conflict patterns, task time dependent/time independent values, etc.]. Proofs/validation established
for design solutions based on clairvoyance assumptions are valid only for a particular point (at

* best, a small region) in this multidimensional space. In other words, the coverage factor of such
proofs/validation is not very good.

The other one, called the dynamic design approach (D), is consistent with the widely accepted
fact that clairvoyance assumptions are unrealistic in general. It can be demonstrated that
clairvoyance assumptions are fully antagonistic with the very nature of LDPART systems. Proofs/

0 validation can indeed be established for design solutions based on zero or limited a priori
knowledge. The price incurred to establish (more complex) pronofs compared with demonstrating
properties under a S approach is paid only once, with the very interesting result that such proofs/
validation are valid throughout the entire multidimensional space (zero a priori knowldege) or
most of it (limited a priori knowledge). In other words, the coverage factor of such proofs/
validation is very close or equal to one [I].

Examination of current state-of-the-art in Computer Science indicates that proofs/validation exist
today for many D design solutions, the only ones to match the basic nature of LDPART systems.
We believe that, as time goes by, more proofs/validation will become available for D design
solutions, thus relegating some of the S design solutions to the precambrian era.

Let us give examples of design solutions that have a poor coverage factor in the context of
LDPART systems. The fist example is concerned with those real-time systems that are based on
the premise that external events should be looked at only when appropriate, i.e. periodically
sampled, this being thought to be absolutely required to prove timeliness properties. In fact, what
this really means is that such an extraordinary assumption is made to ease the designer's job ! It
looks like the question of whether the environment really behaves periodically is of minor
importance.

The second example is linked with the first one. A priori knowledge of periodical patterns is then
used to uisolve, the shared bus multiaccess problem, using a very conventional solution that is

* Static Synchronous Tume Division Multiplexing [allocation of bus slots to (periodical) messages
is pre-computed off-line]. The construction of a reliable distributed SS-TDMA bus precisely
raises the fundamental issue of how to synchronize entities (bus attachment units) without
resorting to centralized control. This issue does not seem to be considered worth addressing either

71

0

by those who believe that it is vsimple enough, to be tackled oat the hardware level)>. They are
wrong. Synchronization is an essential algorithmic issue, even at the hardware level [2]. Now the
fallacy : SS-TDMA bus based systems are publicized as •distributed systems),. Those who
believe in such designs fool their audience --or try do so-- and maybe fool themselves, for the
most sincere of them, by calling ((real-time distributed system,, what . ms out to be just a
synchronous asymmetrical wait-state free multiprocessor. They do not realize that with this type
of design, they can only mimic, with a digital technology, what used to be called analog 0
computers !

Let us now summarize. The examination of the proofs/validation issue reveals that D design
solutions have coverage factors greater than those resulting from S design solutions. This is
cor sistent with conclusion #1, which precludes clairvoyance.

We thus conclude that the correct computational model to reason about, to design and to prove
properties of LDPART systems is the model of asynchronous concurrent, on-line scheduled.
r, milp .

3. MAJOR ISSUES •

3.1. Lack of clairvoyance does not preclude proving

With our approach, the four major issues are mutually related. We will thus present how we
proceed to design and validate LDPART systems. Positions and recommendations are clearly 0
pointed out in the sequel.

Let us first mention that w.r.t. formal models and logics, we have no special recommendation, as
there is no consensus on useful models of distributed/parallel systems and logics for reasoning
about/proving their properties, this being especially true when considering timeliness properties.
This is an example of an area where state-of-the-art does not offer sufficiently powerful methods
or solutions yet.

In order to conduct a validated LDPART system design, we (not surprisingly) recommend using
our general computational model (see above), which has proved to be adequate to tackle all
critical issues consistently, essentially Concurrency Control (Synchronization), Real-Time 0
Scheduling. Global Time and Fault-Tolerance. A design model, which is derived from this
computational model, is used to ,cinstantiate,, those algorithms (solutions to the critical issues)
that are proven correct, and appropriate for a particular LDPART system under consideration. As
will be shown, this design model essentially is an object oriented transactional model. Our
approach is based on proving Droperties of individual algorithms (solutions), on

o of algorithm composition, this being done within the framework given in section 2, i.e.
assuming only partial knowledge or zero knowledge of the future.

We refute the conventional precambrian allegation that proving is impossible if one is not
clairvoyant. Convincing arguments in favor of on-line (non clairvoyant) algorithms can also be
found in [3].

Separately, when considering a particular architecture for implementation, those variables found
in the (proven) solutions can be valued, thus yielding the numerical values of such measures of
interest as upper bounds on response times, lower bounds on global time precision, lower bounds

72

* on task throughput, etc.

Our position is clearly to separate design and dimensioning. For those solutions selected during
system design, we use established proofs of we prove properties of interest, under the form of
computable functions or under the form of theorems. Let us give two examples.

* The serializability theorem established for well-formed transactions which obey the 2-phase
locking rule is an example of a (safety oriented) proof established with zero-knowledge of the
future. Similarly, we have proved the existence of finite upperly bounded response times for
shared multiaccess broadcast networks, in the absence of overloads, without assuming a priori
knowledge of individual node traffic patterns (contrary to what is needed with SS-TDMA or token

* passing protocols). The corresponding protocol, called Deterministic Ethernet or CSMA-DCR
(Deterministic Collision Resolution), has a variant called DOD-CSMA/CD (Deadline Oriented
Deterministic CSMA/CD) which is capable of handling messages that have deadlines. We have
proved that DOD-CSMA/CD is an optimal on-line distributed scheduling algorithm for periodic
and sporadic message arrivals. This, and the absence of overload, are the only clairvoyance
assumptions needed. We conjecture that an optimality proof can also be given in the case of

* overloads and for aperiodical arrivals.

3.2. A design model for LDPART systems

Execution of asynchronous concurrent computations is conducted via Concurrency Control (CC)
algorithms. We rely on the Serializability Theory and on related CC algorithms to prove
properties (safety and liveness properties) of concurrently executing application S/W modules. A
real-world, well established, incarnation of the Serializability Theory is the Transactional Model,
which turns out to mteh Object Orientation quite well. We have found the following design
model to be very appropriate when considering LDPART systems:

- a transaction is a set of actions/threads that invoke/enter objects (to access computational
resources)

- the binding between actions/threads and objects is dynamic (a consequence of our rejection of

clairvoyance)

- objects are characterized with three attributes, namely multiplicity, persistency, access.

Muli~p' *

* unique instantiation (UI) of every object, no assignment problem

o multiple instantiations (MI) of every object, constituting a class per object (e.g. processors,
multiple copies of a variable), raising an assignment problem

Peristen

* no persistency property (NP), for such objects as processors, communication links

e persistency property (P), for such objects as mechanical devices (e.g. physical orientation of a
robot arm), data structures

73

0

0Access

"* centralized (C), i.e. global knowledge (GK) is available (within the limits of what is possible

when assuming no clairvoyance)

"* distributed (D), i.e. only partial or incomplete knowledge (subsets of GK) is available.

System-wise, there are two possibilities:

"* single-object systems (e.g. a uniprocessor, a communication channel) (SOS)

"* systems comprising multiple (non equivalent) objects (MOS) 0

No need to elaborate on the well-known advantages of the Transactional Model and Object-
Orientation w.r.t. S/W engineering as well as w.r.t. the existence of guaranteed properties, such as
ACID properties for transactions and on-line updatable data (All-or-nothing, Consistency,
Isolation, Durability). 0

On the contrary, it might be necessary to elaborate on the following. LDPART systems contain
and maintain distributed data structures that are updated on-line. Exmnples are sensor/actuator
status tables, environmental data, internal system tables. Hence the need to use CC algorithms.

Of course, safety or liveness properties are not equivalent to timeliness properties. Consequently,
only those CC algorithms that can be comnosed with on-line schedulers should be considered.

3.3. Distributed control of asynchronous concurrency and distributed on-line
scheduling

0

The design model given above can now be used to reason about such a composition. Table 2
shows a condensed taxonomy-oriented view of the issues, for the UI case (essentially, the MI case
is obtained by adding the assignment problem). Table 2 can be illustrated as follows. (HPF stands
for Highest Priority First, EDF stands for Earliest Deadline First).

C1 HPF/EDF for uniprocessors
c2 = HPF with priority inheritance for uniprocessors
c3 = scheduling over asymmetrical shared-memory multiprocessors
C4 = HPF and priority ceiling over shared-memory multiprocessors
d = EDF over a broadcast communication channel
d2 = EDF over a multiclient/single file server system -

d3 = best-effort scheduling over a distributed system
d4 = EDF + 2-phase locking + deadline-based deadlock avoidance

It is now easy to -ddress the combined issues of CC and Scheduling. Under a deadlock prevention
approach, the CC issue disappears. One is left with the problem of choosing an optimal on-line S
distributed scheduling algorithm. Under a deadlock avoidance or a deadlock detection-resolution
approach, one must select CC and Scheduling algorithms in such a way that, for any given
conflict scenario between two real-time transactions A and B, both algorithms make the same
decision (A precedes B or vice-versa). The example given for d4 illustrates a compatible

74

combination. However, this correct combination is not optimal, i.e. it cannot handle some
scenarios (e.g. overloads) that can be accommodated by other combinations.

It might be appropriate to concentrate a little on the notion of optimality for on-line distributed
algorithms. This notion is built upon the definition of optimality for on-line algorithms. An
optimal on-line algorithm has the smallest achievable competitive ratio, noted r (i.e. the smallest
loss compared to a clairvoyant algorithm). Given the same amount of limited a priori knowledge,
no other algorithm can dominate an optimal algorithm.

When distribution must be accounted for, global knowledge GK that is given a priori is not
accessible to an algorithm (as is the case with centralized on-line algorithms). Consequently, some
(distributed) algorithm must be used to <<bridge the gapo, i.e. to approximate GK. Assume, for
example, that broadcasting is free of charge and instantaneous. Then, distributed schedulers are
always cognizant of those tasks waiting to be scheduled, system-wide. In this (ideal) case,
Kdistributedo> optimality is equivalent to <<centralizedc optimality.

Optimality in distributed systems corresponds to achieving the best approximation of GK, noted
k, i.e. the smallest uncertainty ratio u = GK/k. Consequently, an optimal on-line distributed
algorithm has the smallest achievable competitive ratio u*r.

As mentioned before, DOD-CSMA/CD is an example of a provably optimal on-line distributed
scheduling algorithm for case d, (table 2), for the computational model indicated.

Case d1 (as well as case d2) complexity is relatively easily tractable. This is not the case with
cases d3 and d4 . Some satisfactory solutions have emerged very recently. However, the design and
validation of LDPART systems will not be a mature discipline until more correct, and possibly
provably optimal, solutions become available for case d4 .

Also, the concept of competitive ratio should be refined, so as to yield more realistic bounds than
those established assuming an all-knowing adversary, which is overly pessimistic in many real
world settings.

Let us conclude this section by briefly showing what can be achieved under our approach. Let us
use the DOD-CSMA/CD example again. Without any a priori knowledge, it is possible to prove
that under worst-case conditions (a global collision among n contenders), it takes at most T to
transmit all messages successfully, with

where F is the number of equivalence classes chosen for deadlines (i.e. comparable deadlines), s
is the conventional CSMA/CD channel slot time and tn represents the total message (n of them)
transmission time (without collisions).

It is possible to obtain bounds also for the algorithms we have selected to solve the (more
difficult) combined problem of distributed Scheduling and multiple-object Concurrency Control.
Validation of a design is then very easy. We use the parameters given to characterize a particular

LDPART system (e.g. arrival laws, individual task/message durations). From the analytic

75

expressions of bounds, we compute the corresponding numerical values and check whether they

match the specified system-wide requirements/objectives. If not the case, a different design

solution must be considered or additional a priori knowledge must be provided (although this will

reduce the coverage factor of the corresponding solutions).

3.4. Fault-tolerance

With LDPART systems, many abnormal behaviors (called failures) could result from

multiplexing together an a priori unknown number of application S/W modules (transactions)

over an a priori unknown number of computational resources. Given our proof-based approach

and our computational model, such failures cannot exist, if it can be assumed that:

(i) every individual transaction is correctly implemented,

(ii) every algorithm is correctly implemented.

We are thus restricting the scope of fault-tolerance in LDPART systems to the familiar area of

conventional S/W engineering and need only draw solutions from current state-of-the-art in Fault
Tolerance.

We will not discuss here the relative merits and drawbacks of S/W engineering sulutions directed
at producing dependable S/W. Whatever solution is used, operational S/W still contains obugs,,.
The best (non speculative) solutions to this problem today are those used in Tandem systems
(process pairs, primary/backup, checkpoints) and in Stratus systems (process pairs, dual duplex
processing). Although process replication does not solve the <(solid bug, problem (S/W design
faults), experience indicates (statistics published by Tandem Corp. in particular) that process
replication solves most H/W failure related problems as well as the <(transient bug)) problem,
which seems to largely dominate the <<solid bug)) one.

Replication of process exeution at run-time and replication of H/W as well as of system S/W
(OS) need to be hidden. It is no coincidence that the Transactional/Object Orientation Model has
proved itself as being well suited to provide application S/W developers with a programming
interface that fully hides the intricacies of the solutions used to achieve a given degree of system-
wide fault-tolerance. This is not surprising indeed, as the same design Model has proved itself to
be well suited also to hide the intricacies of the Distributed Concurrency Control and Scheduling

solutions, as indicated above.

Regarding fault-tolerance, from a more general (and maybe theoretical) viewpoint, one must be
aware of the fact that the oReal-Time community)) implicitly relies on what is inappropriately
called a osynchronous, computational model (i.e. a model where upper bounds on computation/ 0
communication delays are known a priori). Fault-tolerance under such a model might raise the
need to perform on-line assumption verification (that the bounds are not violated). This is a
delicate issue. We recommend that snecial attention be paid to this issue. Especially when systems
are ,large,, assumptions on a priori knowledge of *good* bounds might have a bad coverage
factor. Hence, it might be necessary to use a wpartially synchronous,, computational model (i.e.
bounds exist but are not known a priori) which still permits deterministic solutions, or an

,(asynchronous)) computational model (i.e. bounds do not exist), where only probabilistic or
randomized solutions can be contemplated.

76

A last point might be worth addressing, that is testing/debugging of LDPART systems. As we still

do not know how to produce fault-free S/W, we still have to rely on testing/debugging. It is often

heard that this task is rendered more difficult in the case of distributed architectures. We do not
understand this statement. We suspect that it might result from a lack of understanding of what is

needed for a real-time distributed system to run correctly. We have shown that CC algorithms are

needed, in particular to enforce particular orderings or histories on sets of concurrent events.
Typically, CC algorithms use attributes representing some notion of logical time, such as

timestamps or tickets. These attributes reflect causality relationships among events. Similarly,
global physical time must be maintained in a LDPART system. Physical timestamps reflect
chronological relationships among events.

It is therefore possible to record separately histories or traces as produced by individual
components of a LDPART system and merge them consistently by using the logical/physical
attributes associated to events. This yields the possibility of observing system-wide causally and
chronologically correct histories, as is the case with conventional (centralized) systems.

4. CONCLUSION

We have developed a number of arguments which, we hope, should help our community to save
time and invest resources where appropriate. LDPART systems are raising issues which cannot be
correctly tackled without knowledge of current state-of-the-art in Computer Science. Even though
very simple designs have been satisfactory in the past, that will be less and less often the case. The
precambrian era is over. Given the continuing advances made in H/W, we feel it mandatory to
adopt an open-minded approach to the challenging issues raised with LDPART systems, so as to
avoid facing somewhat embarassing conclusions such as not allowing oneself to use off-the-shelf
technology (e.g. cache-memory based computers) because they do not fit an excessively poor/
naive computational model.

References

[1] G. Le Lann, <(Designing real-time dependable distributed systems,>, Computer
Communications, (Butterworth-Heinemann pub.), vol. 15, no 4, May 1992, pp. 225-234.

[2] AJ. Martin, (Tomorrow's digital hardware will be asynchronous and verified)., IFIP
Congress 92, (Elsevier North-Holland pub.), Madrid, September 1992, pp. 684-695.

[3] R.M. Karp, ((On-line algorithms versus off-line algorithms : how much is it worth to know
the future ?7, IFIP Congress 92, (Elsevier North-Holland pub.), Madrid, September 1992,
pp. 416-429.

77

Co0mouter Science Mathemnatics

system objectives/hequirements - disciplines

computational model = axioms 0

design solutions - theorems

implementation a particular application of theorems

Table 1: a rigorous design/implementation cycle

U1

SOS MOS

NP cI d, c3 d3

P C2 d2 C4 d4

C D C D

c1 conventional Scheduling (single processor)

C2 conventional Scheduling with critical sections

c3 conventional Scheduling (+ broadcasting/dispatching), no CC S

C4 same as c3 , with centralized multiple-object CC

d1 distributed conventional Scheduling (single distributed object), no CC

d2 same as d1, single-object CC

d3 distributed Scheduling, no CC

d4 same as d3, multiple-object CC 0

Table 2: Concurrency Control and Scheduling

78 •

ISSUES IN DISTRIBUTED REAL-TIME SYSTEMS

Jane W. S. Liu

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

INTRODUCTION

In recent years, significant progress has been made in the design and evaluation scheduling

algorithms that are basic building blocks of real-time systems containing one or a few processors and

supporting traditional embedded applications. In particular, the rate-monotonic approach [1-4] to

scheduling real-time computations and data communications is well developed. Algorithms for assigning
periodic tasks to processors. processor scheduling, I/O bus and broadcast network access, synchronization
between periodic tasks, and interrupt handling are now available (e.g., [5-81). There is a growing
collection of rigorous performance bounds and simulation/measurement data to support design choices
and decisions. Systematic design and synthesis methods and sound validation and testing strategies are
beginning to emerge.

In contrast, the basic methodologies needed to build and validate distributed real-time systems are
not yet available. This is especially true when the applications are complex and dynamic and have
critical timing constraints. Many problems on scheduling and resource access control of distributed real-
time applications remain to be solved. Systematic design and synthesis methods and tools need to be
built on not only the solutions to these problems but also rigorously established boundaries governing the
correct and safe usage of the solutions. Examples of key problems include how to schedule tasks to meet
their end-to-end timing constraints in distributed and parallel environments; how to make scheduling and
resource access control decisions when information needed to support such decisions are old, partial or
unavailable; how to predict and prevent oscillatory behavior and instability of the resultant systems built
on dynamic scheduling strategies; and how to ensure graceful degradation in the presence of overloads
and failures.

This paper first describes a view of distributed and parallel real-time systems and suggests a
hierarchical approach to scheduling and resource management and to reasoning about the timing behavior
of large distributed systems. It then discusses the key problems mentioned above and concludes by
giving additional arguments on why the design of real-time systems should have sound theoretical
foundations in real-time scheduling.

MODELS OF LARGE, DISTRIBUTED, AND PARALLEL SYSTEMS

By a large system, we mean one that contains hundreds or thousands of tasks. Here, the terms tasks
and subtasks loosely refer to individual units of work that are allocated resources and executed to support
the functionalities of the system. For example, a task or a subtask may be a granule of computation, a
unit of data transmission, a response to a query, or even an operator action. It executes on a computer, a
data link, a database, or an operator console. We model all resources on which tasks execute abstractly as
processors.

A system may contains many different types of processors. Processors of different types cannot be
used interchangeable either because they axm functionally different (e.g., signal processors, data

79

0

processors, and communication links are functionally different processors), or because they are located at

different places (e.g., the data links connected to onboard sensors are distinct from the links to a decision

support system on the ground.) On the other hand, processors of the same type are considered to be

identical or compatible because they can be used interchangeably.

Concurrency

In a complex distributed system, a task typically consists of subtasks that are dependent on each

other and execute in turn. For example, in an air traffic control system, the sequence of operations that is 0

carried out when an aircraft first enters a coverage area is such a task. It consists of a sequence of

subtasks which model the processing of the radar sensor data on a signal processor to generate a track

record, the transmission of the track record to a data processor, the correlation of the track irecord with

other records on the data processor, the transmission of the aircraft characteristics from the data processor

to an intelligent decision support system, the analysis by the decision support system, and so on. until the

correct action is taken. The processors on which the subtasks execute are different because they support

different functions. On the other hand, the processors that handle the displays in an airport control tower
and an enroute control center may be functionally identical. We nevertheless consider them to be of
different types because we do not want to execute the subtask that updates one display on the processor

directly connected to the other display under normal operating conditions. Similarly, in a command,

control and communication system, the task of sending a message can be decomposed into subtasks that
route and transmit the message from the sender to the receiver(s) in a large network of data links and
switches. The switch and link connected to the sender are different from the switch(es) and link(s)
connected to the receiver(s) because they cannot be used interchangeably.

From the examples above, we see that concurrency in a distributed system arises naturally as
subtasks of different tasks sequencing through different processors in a pipeline fashion. This type of

concurrency can be captured to a great extent by the classical job shop and flow shop models and their
variations [9-12]. The former models a system in which the subtasks in different tasks execute on
different processors in arbitrary orders, while the latter models a system in which the subtasks in different
tasks execute on different processors in the same order.

A variation of the classical model is the constrained job shop; this model characterizes a distributed

system as a set of heterogeneous flow shops that share processors. In other words, a system contains
many classes of tasks: tasks in the same class execute on different processors in the same order, but tasks
in different classes execute on different processors in different orders. The corresponding queuing
theoretical model is a network of queues with many job classes and multiple routing chains. Each chain 0
gives the order in which tasks in a class execute on different processors. An example where this model is
appropriate is a multihop. real-time network. The individual flow shops model virtual-circuit connections
established in the network. Each connection carries multiple streams of real-time data that must be
delivered from one end of the connection to the other end in time.

Other variations of the classical flow shop and job shop models are flow shop with recurrence and
periodic flow shop and job shop [12]. In a flow shop with recurrence, each task executes more than once

on one or more processors. This variation models a system that does not have a dedicated processor for
every function. An example is a control system containing three computers: a sensor data processor, a
computation server, and an actuator command generator. The computers are connected by a token ring.
We can model the token ring as a processor and the system as a flow shop with recurrence. Each task

executes first on the sensor data processor, then on the ring, on the computation server, on the ring again,
and finally on the command generator. In a periodic flow shop or job shop, each task, and hence each

80 0

subtask, is a periodic sequence of requests for the same computation or communication. A multi-hop

connection that is used to transmit periodic multimedia data and a distributed air traffic control system

that periodically processes radar returns, tracks aircrafts and displays their flight paths can be modeled as

periodic flow shops or jobs shops.

Parallelism

In addition to concurrent executions of subtasks on different types of processors, parallel executions

are feasible whenever there are more than one processor of same type. In an air traffic control system, for
example, there may be an array of signal processors, making it possible to execute many signal

processing subtasks of different tasks in parallel. Similarly, multiple links and switches between the

sender and the receiver(s) provide parallel paths that can be used to increase throughput or reduce
message delay. The traditional multiprocessor and redundant-processor models (e.g. [13-18]) used in
studies on parallel and distributed scheduling, task assignment and load balancing capture this type of
parallelism. Such a model characterizes a subsystem abstractly as a set of processors that are either
identical or compatible; a subtask can execute on any of them. Each subtask may be further divided into
subtasks of smaller granularity so that the degree of parallelism can be increased with possible
accompanied increases in communication and scheduling overheads.

Some processors may in fact be massively parallel machines. Examples of such processors include
some parallel systems designed to do image enhancement, feature extraction and object identification.
Fine-grain parallelism can be exploited to speed up the completion of subtasks only when we have good
parallel computation algorithms and parallelizing compilers. The issue here is not about real-time
scheduling.

REAL-TIME CONSTRAINTS

By a real-time system here, we mean specifically a computing and communication system in which
a significant number of of tasks have critical timing constraints. Timing constraints of a task can almost
always be expressed in terms of its (absolute or relative) release time and deadline. The former is the
time instant after which it can begin execution. The latter is the time instant by which it must be
completed. A timing fault is said to occur when one or more timing constraints are violated. A real-time
system operates correctly only in the absence of timing faults.

Timing constraints that follow naturally from high-level requirements of distributed real-time
applications are typically end-to-end in nature. For example, in a collision detection and avoidance
system, the maximum allowed elapse of time from the instant when a target is detected to the instant
when an evasive action must be taken is determined by how soon a collision can occur. The requirement
that a correct evasive action is taken in time imposes an overall deadline on the task consisting of a
sequence of computation and communication subtasks. (These subtasks process radar returns, identify
the target, compute its course, choose the evasive action, and generate and send the commands to the
actuators.) As long as the sequence is completed by the deadline, it is not important when the
intermediate computational subtasks are done or how long messages are delayed.

In other words, to meet end-to-end timing constraints of a task, we are required to begin executing
its first subtask at or after its release time and complete the execution of its last -.ubtask by its deadline.
The intermediate subtasks have only derived release times and deadlines; their executions are constrained
only by the dependencies between them and by the fact that they must be completed sufficiently early to
allow the on-time completion of the last subtask. Their lack of application-imposed timing constraints
provides the system with more freedom in scheduling the intermediate subtasks. This freedom, together

81

with our desire to take advantage it to achieve greater efficiency in resource usage, increases the
complexity of scheduling and resource access control in distributed and parallel environments.

HIERARCHICAL APPROACH 0

The characteristics of concurrency and parallelism in task executions and the end-to-end nature of
their timing requirements suggest a hierarchical approach to scheduling in distributed environments. The
primary goal of scheduling and resource access control in a distributed real-time system should be to
enforce the end-to-end timing constraints that directly follow from high-level timing requirements of the 0
applications supported by the system. In end-to-end scheduling of time-critical tasks, we want to assign
intermediate release times and deadlines to their subtasks and to schedule the subtasks on the individual
processors so as to ensure the completion of all tasks in time whenever it is feasible to do so. We want
the resultant system to be responsive to varying demands, to degrade gracefully in the presence of
overloads and failures, and to be easy-to-modify, maintain, validate and test.

Scheduling subtasks on interchangeable processors have a set of secondary goals, including to make
good use of parallelism, to maximize the likelihood of on time completion of subtasks, to equalize
resource utilizations, to provide redundancy, to increase availability, etc. The traditional focus of
research on distributed and parallel systems has been on ways to meet these secondary goals. Past works
on parallel and distributed scheduling have produced many excellent task assignment and load balancing 0
schemes, as well as performance bounds of multiprocessor scheduling algorithms; examples of these
results can be found in [13-19). These schemes can enhance cnd-to-end scheduling algorithms in order to
improve the overall robustness, efficiency, and availability of a distributed system but, by themselves, are
not solutions to the end-to-end scheduling problem.

To illustrate the relation between the end-to-end scheduling problem and the traditional distributed 0
scheduling problems, we note that one way to do end-to-end scheduling is to assign intermediate release
times and deadlines to all subtasks. Af -, the intermediate release times and deadlines are assigned, we
can then use some task assignment, multiprocessor scheduling, load balancing and task migration
schemes to schedule the subtasks on processors of each type, trying to make the best use of parallel
resources. Therefore, an end-to-end scheduler can be viewed as a high-level system module that contains 0
multiprocessor schedulers, load balancers and resource managers as components.

END-TO-END SCHEDULING ISSUES

We now examine several issues in end-to-end scheduling that remain to be addressed. They are
concerned with increasingly more complex and dynamic situations, listed here according to the amount of 0
load and status information available to support scheduling decisions and the costs of maintaining this
information.

Scheduling with Global Information

Almost all available end-to-end scheduling algorithms that are supported by rigorous performance
bounds and profiles are suited only for systems and subsystems that are either sufficiently small and
tightly-coupled or sufficiently static. Examples of the former include flight control and radar signal
processing systems, which are really multiprocessor systems. Examples of the latter include industrial
process control, multihop virtual-circuit networks, and flight management systems under their normal
operating conditions. In these systems, it is feasible to collect and distribute global load and status 0
information and keep the information sufficiently current. Consequently, it is reasonable to assume that
the scheduler for each processor, or each type of processors, knows the timing and resource requirtments

82

of all the tasks in the system as well as the decisions made by other schedulers. Therefore, it is feasible

for the schedulers to work closely together and arrive at compatible decisions, or even do scheduling

centrally.

Again, a reasonably realistic workload model for systems on which global status information is

available is the constrained job shop model. Rather than scheduling all the tasks from all classes together

according to one algorithm, a practical strategy is to partition the time available on processors of each

type and allocate them to task classes. The processor time allocations ame adjusted on an infrequent basis,

(during mode changes, new connection establishments, etc. for example). This allows the tasks in each

class to be scheduled according to a scheduling algorithm suited for the class. A system that contains N

classes of tasks and uses such a semi-static partition and allocation strategy can be modeled as a system of

N flow shops. Many known algorithms designed for scheduling in flow shops and job shops to meet end-

to-end deadlines or to minimize lateness and algorithms for scheduling jobs in factories (e.g. [12,19,201)

are likely to be applicable. These algorithms should be studied and thoroughly evaluated.

Algorithms for assigning intermediate release times and deadlines to subtasks in periodic flow shops
and job shops are also emerging. One way assumes the use of a preemptive static-priority-driven
algorithm (e.g. the rate-monotonic or deadline-monotonic algorithm) to schedule subtasks on each type
of processors. In this case, the rate-monotonic (or deadline-monotonic) technique can be extended
straightforwardly to deal with end-to-end scheduling. Another example of periodic job shop scheduling

algorithms uses a novel convex programming method and an iterative modification method to divide the
feasible interval between the release time and deadline of every task into segments in order to assign
intermediate deadlines, to check whether schedulability conditions on all processors are met. and to
modify the intermediate deadlines if necessary.

How to integrate task assignment, load balancing and concurrency control functions into end-to-end
scheduling is a problem that has not yet received much attention. Sound strategies need to be developed.
Strategies and algorithms assuming current global information can serve as benchmarks against which we
can measure the effectiveness of algorithms that do not rely on the global status information.

Scheduling Based on Local and Global Information

In large and/or dynamic systems the information about the global system state is not always
available and is usually too costly to keep current. This case of the end-to-end scheduling problem
resembles the problems in routing and flow control in packet-switched networks. The major difference
between the problems is in the primary objectives of scheduling: we want to make sure that all time-
critical tasks will meet their end-to-end deadlines while the objectives of muting and flow control are to
keep the average end-to-end response time low and the overall throughput high, and to ensure fairness
among tasks. Nevertheless, there are good lessons to be learned from strategies in routing and flow
control for coping with missing or old global information.

Using Periodically Updated Global Information - For example, the strategy used in a version of
the arpanet routing algorithm is to let each switch make its routing decisions based on its own
information on the global load condition. This information is updated periodically. The rationale behind
this strategy is that the information will remain sufficiently current throughout the update period and the
routes chosen based on this information will be sufficiently good. A similar strategy for end-to-end
scheduling is feasible when the system consists mostly of periodic tasks and sporadic tasks with bounded
interarrival rates. The number of subtasks on each processor (type) and their total utilization can be made
available periodically to all schedulers in the system, for instance. The scheduler for each processor can

83

use this information to estimate when new subtasks are likely arrive. This makes it possible for the

scheduler to do some pre-planning, to increase the schedulability and reduce the completion times of its

subtasks. Design parameters of this strategy are the amount of information exchanged by the schedulers

and the length of the update periods. How to choose these parameters based on the time parameters and

dynamics of the task system is a question to be answered.

Using Local Information Only - Rather than scheduling the executions of all the subtasks in each

task in a coordinated manner as discussed earlier, an opposite approach is to have the scheduler on each

processor decide when to execute what subtasks based on the information it has about the parameters of

its own subtasks alone. No information is exchanged between schedulers. In this case, a scheduler

cannot predict the arrivals of new subtasks and their parameters. Moreover, the execution times of later

subtasks may be unknown; the given end-to-end deadlines do not provide much information on when the
intermediate subtasks must be completed. There are many reasons to believe that we will have poor
performance when scheduling decisions are based solely on local information. Under the assumptions

stated above, there is no choice but to schedule the subtasks on each processor completely on-line. It is
known that the performance of completely on-line scheduling is poor (21]. We can also view an end-to-
end schedule produced independently by the individual schedulers as a priority-driven schedule based on
decisions that are at best locally optimal. It is known that priority-driven scheduling strategies have
unacceptably poor worst-case performance in systems that contain functionally dedicated processors [16].
In despite of all the preliminary evidence against it, local scheduling approach should be thoroughly
evaluated for two reasons. First, this approach is the only feasible one in extreme situations when no
prior knowledge about tasks parameters are available; even when any task will be released and ready for
execution is unknown. Second, its performance data will give us a set of benchmarks on one end of the
performance spectrum, with the data on algorithms for scheduling with complete knowledge on the other
end.

Using Both Local and Global Information - The strategies that use both local and global
information and combine local decisions with global decisions are likely to be effective. In particular,
local information that is current can be used to supplement the global information that becomes old. In
this way, we can reduce the update frequency of the global information and improve the responsiveness
of the system. A well-known example of strategies for combining global and local decisions is delta
routing in networks [22). Analogous strategies for combining global information with local information
to make end-to-end scheduling more responsive and robust while keeping the cost of maintaining status
information low should be explored. Specifically, hybrid scheduling strategies combine off-line

scheduling based on global information with on-line scheduling based on local information. The global
schedule(s) is modified infrequently. Some dynamic conditions have short time constants, making it
impossiNe or too costly to maintain global information about them. Responding to these conditions is
taken care by local schedulers. They try to schedule on-line the unexpected tasks as best as they can
based on their local information and the guideline given by the global schedule. These strategies fit well
in the framework of the rate-monotone paradigm and the imprecise computation paradigm (24-27].

Dynamic, Adaptive and Monitor-Based Scheduling

Algorithms known as dynamic algorithms, adaptive algorithms and monitor-based algorithms
assume that the system condition is monitored and scheduling decisions an based on the observed
condition. (We will simply refer to them all as adaptive algorithms.) In some cases, decision rules may
also change as the observed condition changes.

84 0

It is well known that adaptiveness can lead to oscillatory behavior and instability. We cannot use a

adaptive algorithm for scheduling functionally critical tasks until we thoroughly understand the dynamic

behavior of the resultant system and have effective methods for predicting oscillatory behavior and

instability and for preventing them. One way to prevent instability and oscillatory behavior is to make

adaptive schedulers less sensitive to changes in the system condition. Another way is to avoid

synchronous reactive actions of all the schedulers. Unfortunately, all the effective methods tend to make
the system less responsive and impose a limit on how dynamic a system can be. It is important for us to

know this limitation.

Enhancing Graceful Degradation

The imprecise computation technique [24-27] is a natural way to provide graceful degradation and
to cope with uncertaL-vy in system load. We call a system based on this technique an imprecise system.
In an imprecise system, each time-critical task is structured in such a way that it can be logically
decomposed into two portions: a mandatory portion and an optional portion. The mandatory portion of
the task must be completed to produce an approximate result of an acceptable quality. This portion of a
time-critical task must be completed by the deadline of the task. The optional portion refines the
approximate result produced by the mandatory portion. We can choose to leave this portion unfinished
and terminated prematurely if necessary, with an accompanied reduction in the result quality.

An example of where the imprecise computation technique is applicable is facsimile transmission.
When the progressive built-up method is used, the data encoding each still image is divided into four
blocks; each additional block gives a clearer image. The mandatory portion is the transmission of the first
one or two of the four blocks that gives a fuzzy but intelligible image. Other blocks can be discarded
when the network is congested. Other examples include transmissions of compressed voice and video,
tracking and feedback control. In each case, we often prefer to have a timely result of a poorer quality
than a late result of the desired quality.

The imprecise computation technique makes meeting all timing constraints significantly easier for
the following reason. To ensure that all deadlines are met, we only need to ensure that all the mandatory
portions of all tasks are completed by their deadlines. This can be done by restricting all the mandatory
portions to have bounded execution time and resource requirements and scheduling them in a
conservative and robust way. The leftover system resources can be used to complete as many optional
portions as possible. It is not necessary to eliminate non-determinism in the timing and resource
requirements of optional subtasks, thus allowing greater freedom in their design and implementation. For
different types of applications, the costs and benefits in the tradeoff between the result quality and
execution time requirements are more appropriately measured by different criteria. Many scheduling
algorithms have been developed to tradeoff according to these criteria, including the ones described in
[24-26]. Among the existing algorithms for scheduling imprecise computations, many can be modified
for end-to-end scheduling. Examples include the class of algorithms for scheduling periodic subtasks and
for on-line scheduling. The imprecise computation approach to flow and congestion control is feasible
for voice, video and other messages as long as they are encoded using a technique that allows their
transmissions to be imprecise.

SUMMARY

The hierarchical approach to scheduling and resource access control points to a hierarchical
decomposition approach to design, synthesize and test large real-time systems: A large system is
decomposed into subsystems. From scheduling point of view, each subsystem consists of subtasks that

85

execute on processors of the same type. The timing requirements of the individual subsystems are

derived from the timing requirements of the system as a whole. To ensure that all timing constraints of

the system are met involves making sure that the timing constraints of each subsystem are met and that

the end-to-end scheduling strategy robustly enforces the overall timing constraints as it integrates the

subsystems together. The hierarchical decomposition approach is in fact old and commonly used. Its

effectiveness in dealing with large distributed real-time systems is being questioned primarily for the

following reason. The intermediate timing constraints of subsystems are typically assigned in a trial-

and-error manner, and the end-to-end timing constraints are often not met when the subsystems designed

to meet their assigned timing constraints are scheduled together. What we need to make this approach

effective are principles in end-to-end scheduling and resource allocation that can guide the decomposition

and integration processes.

Past experience has led us to believe that a large distributed system with critical timing constraints
must be designed and built on sound and rigorous scheduling theories. Such a system has an intractably
large number of states. It will be impractical, or even impossible, to validate and test the system in an

enumerative and exhaustive manner. We need non-exhaustive validation and testing strategies that have
provably complete coverage. A hierarchical approach to scheduling and resource access control should
lead to system architectures for which such strategies anm likely to be feasible.

Many distributed systems built to date are known to exhibit nondeterministic. oscillatory and 0
unstable behaviors. Because it is difficult to produce the conditions under which the system behaves in
such an undesirable manner during testing, the fact that they can occur is often discovered when the
system has been put in use and failed unexpectedly. We need scheduling theory to provide us with not
only algorithm and protocols to map tasks to processors and resources, but also insights and thorough
understanding of the resultant system so that we can predict and eliminate the oscillatory and unstable
conditions.

REFERENCES

[1] Liu, C. L. and J. W. Layland, "Scheduling algorithms for multiprogramming in a hard-real-time
environment," Journal of the Associaton for Computing Machinery, Vol. 20, No. 1, pp. 46-61, January 1973.

[2] Dhall, S. K. and C. L. Liu, "On a real-time scheduling problem," Operations Research. Vol. 26, No. 1. pp.
127-140, February 1978.

[31 Lehoczky, J., L. Sha, J, K. Strosnider, and H. Tokuda, "Fixed priority scheduling theory for hard real-time
systems," pp. 1-30, in Foundations of Real-Time Computing: Scheduling and Resource Management, Edited
by A. M. Van Tilborg and G. M. Koob, Kluwer Academic Publishers, 1991.

[4] Sha, L., M. H. Klein and J. B. Goodenough, "Rate-monotone analysis for real-time systems," pp. 129-156. in
Foundations of Real-Time Computing: Scheduling and Resource Management, Edited by A. M. Van Tilborg
and G. M. Koob, Kluwer Academic Publishers, 1991.

151 Sprunt, B., L. Sha, and J. P. Lehoczky, "Aperiodic task scheduling for hard real-time systems," Journal of S
Real-Time Systems, 1, pp. 27-60, 1989.

[6] Argawal, G., B. Chen, W. Zhao, and S. Davavi, "Guaranteeing synchronous message deadlines with timed-
token protocol," Proceedings of the 12th International Conference on Distributed Computing Systems,
Yokohama, Japan, June 1992.

[7] Rajkumar, R., L. Sha, and J. P. Lehoczky, "Real-time synchronization protocols for multiprocessor systems."
Proceedings of the Real-Time Systems Symposium, Huntsville, AL, December 1988.

86 0

[8] Baker, T., "A stack-based resource allocation policy for real-time processes," Proceedings of the Real-Time
Systems Symposium. Orlando, Florida, December 1990.

[9] Garey, M. R., D. S. Johnson, and R. Sethi, "The complexity of flow shop and jobshop scheduling," Math.
Oper. Res., vol. 1, 1976.

[101 French, S., Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop, Wiley 1982.

[11] Grabowski, J. E. Skubalska, and C. Smutnicki, "On flow shop scheduling with release and due dates to
• minimize maximum lateness," J. Oper. Res. Soc.,, Vol 34, 1983

[121 Bettati, R. and J. W. S. Liu, "End-to-end scheduling to meet deadlines in distributed systems," Proceedings
of the 1th International Conference on Distributed Computing Systems, Yokohama, Japan, June 1992.

[13] Eager, D. L., E. D. Lazowska, and J. Zahorjan, "Adaptive load sharing in homogeneous distributed systems,"
0 IEEE Transactions on Software Engineering, Vol. SE-12, No. 5, may 1986.

[14] Mirchandaney, R., D. Towsley, and J. Stankovic, "Adaptive load sharing heterogeneous systems,
Proceedings of the 9th International Conference on Distributed Computing Systems, 1989.

[15] Yu, P. S., A. Leff, and Y. H. Lee, "On robust transaction routing and load sharing," ACM Transactions on
Database Systems, Vol. 16, No. 3, September 1991.

[16] Liu, J. W. S. and C. L. Liu, "Performance analysis of multiprocessor systems containing functional dedicated
processors," Acta Informatica, Vol. 10, pp. 95-104, 1978.

[17] Blaswicz, J., "Selected topics in scheduling theory," Annals of Discrete Mathematica, Vol. 31, 1987.

[18] Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, "Sequencing and scheduling:
algorithms and complexity," Centre for Mathematics and Computer Science, Amsterdam, 1989.

[19] Adams, J., E. Balas, and D. Zawack, "The shifting bottleneck procedure for job-shop scheduling,"
Management Science, Vol. 34, No. 3, 1988.

[20] Sycara, K. P., S. F. Roth, N. Sadah, and M. S. Fox, "Resource allocation in distributed factory scheduling,"
* IEEE Expert, February 1991.

[21] Baruah, S., et al, "On the competitiveness of on-line real-time task scheduling," Proceedings of IEEE Real-
Time Systems Symposium, San Antonio, TX, December 1991.

[22] Rudin, H., "On routing and delta routing: a taxonomy and performance comparison of techniques for packet-
switched networks," IEEE Transactions on Comm, Vol. COM-24, pp. 43-59, January 1976.

[23] Chung, J. Y., J. W. S. Liu, and K. J. Lin, "Scheduling periodic jobs that allow imprecise results," IEEE
Transactions on Computer, Vol. 39, No. 9, pp. 1156-1174, September 1990.

[24] Liu, J. W. S., K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao, "Algorithms for scheduling
imprecise computations," IEEE Computer. Special Issue on Real-Time Systems, May 1991.

[25] Shih, W. K. and J. W. S. Liu, "On-line scheduling of imprecise computations to minimize total eror,'
Proceedings of the 13th IEEE Real-Time Systems Symposium, Phoenix, Arizona, December 1992.

(26] Cheong, I., "Scheduling error-cumulative periodic tasks," Ph.D. thesis in preparation, Department of
Computer Science, University of Illinois, August 1992.

4[(27] Liu, J. W. S., K. J. Lin and C. L. Liu, "Imprecise computations: a means to provide scheduling flexibility and
enhance dependability," to appear in Readings on Real-Time Systems, Edited by Y. Lee and M. Krishna,
IEEE Press.

87

On Software Architecture for Large, Distributed, Parallel

Real-Time Systems

C. Douglass Locke
IBM Federal Systems Company Bethesda, MD

(301) 493-1496 locke@vnet.ibm.com

A Position Paper for the Workshop on Large, Distributed, Parallel
Architecture Real-Time Systems Institute for Defense Analyses March, 1993

In recent years, the processes involved in the development of large, distributed, parallel real-time

systems, responding to the major changes in the availability of high-performance hardware, h',,e

undergone a massive change due to the size and complexity of projects undertaken. Not every sys-

tem developed in these environments has been completed successfully; it is clear that the difficul-

ties associated with developing such systems have increased at least as fast as the increase in

computing power. Thus, this workshop is being conducted in an environment in which many of

the previous "rules of thumb" by which such systems have been conceptualized, procured, man-
aged, and developed have become obsolete.

There are four questions posed by the Institute for Defense Analyses for consideration at this

workshop. This position paper considers each question in turn.

INTRODUCTION

Question 1: What is the best method or methodology for designing large, distributed real-'ime
systems where processing elements may have a parallel architecture?

There are several software design methodologies (e.g., Structured Analysis) which are frequently
recommended and used for real-time system design, but none actually address the central require-
ments that distinguish a real-time system. The single characteristic of a real-time system which
distinguishes it from other complex systems is its requirement to provide bounded response times
(usually expressed in milliseconds elapsed between an input and its required external response)
for all or part of its input domain. This is in sharp contrast to non-real-time systems for which the
central performance requirement is generally stated in terms of throughput (usually expressed in
rates, such as messages per second).

The requirement to provided bounded response time rather than some level of throughput creates
a fundamental dichotomy between real-time systems and non-real-time systems which cannot be
bridged by simply adding efficiency requirements to a design produced by any of the currently
favored design methodologies. The requirement of bounded response time produces the need to
manage all shared resources, including the processors, communications, memory, devices, and
interfaces in ways that differ fundamentally from systems whose performance is characterized
only by throughput requirements. For example, message queues for throughput-driven systems
can generally use FIFO disciplines, while message queues for respcrise time-driven systems mnust
generally use time-driven queueing disciplines, such as priority or deadlines.

89

U

This fundamental difference must strongly affect the design process at the highest level. All basic
system components - 9perating system resource management, language run-time processes,
device drivers, communications protocols at every level, and application software architecture --

must consistently reflect .his fundamental difference. In distributed real-time systems being S
designed and built today .and in the foreseeable future, most of these components are, and will
increasingly be available as Commercial Off-The Shelf (COTS) components. The application
software architecture must be constructed to use these components in such a way that its response
requirements can be predictably and consistently met.

REAL-TIME SOFTWARE ARCHITECTURE
The application software architecture can be thought of as the highest level of application design.
As with every level of design, it is expressible as a set of design decisions which will drive all
other design decisions for the application. A real-time application software architecture, whether
in a distributed, parallel or uniprocessor environment, which does not start with the consideration
of its response time requirements, is highly likely to encounter serious performance problems
later in its implementation life cycle, most frequently during integration and test. Design problems
found during integration and test are among the most expensive to fix, particularly when they are
traceable to the software architecture itself.

The software architecture defines just how the hardware will be used to satisfy the requirements.
For each processing node, the architecture dictates which requirements will be supported, how
communications will be handled (including contention and queueing disciplines), how concur-
rency and consistency will be provided and controlled, and how faults (either hardware, software,
or both) will be detected, corrected, logged, and managed.

For real-time systems, the software architecture must start with the answers to several require-
ments-driven questions. Some of the most important of these questions are:

1. Is the design to be event driven or time driven? 2. How many different time constraints are
present in the application? 3. Are the time constraints hard or soft? If soft, what is the nature of the
actual constraints? If hard, are they primarily periodic, or aperiodic? 4. Are the inputs bounded in
quantity and interarrival time? If not, what are their arrival characteristics? 5. Are the algorithms
to be used characterized by bounded execution time?

The answers to these questions must drive the choice of software architecture, including the num-
ber of tasks (a task is a separately schedulable sequential procedure, without implications of pres- 0
ence or absence of shared information or communication with other tasks), use of priorities,
communication techniques, and synchronization techniques. Only after these questions are
answered should a design methodology be chosen. From the real-time perspective, the methodol-
ogy choice can be arbitrary, but the requirements for bounded and predictable time management
must be observed throughout the process, since the methodologies themselves will ignore that
issue. •

It is important to note that the presence of distribution and parallelization will have a significant
effect on the choice of software architecture. At present, there are no completely general, well-
understood architectures that can be easily analyzed to provide predictable response time in a dis-
tributed or parallel environment, in contrast to such techniques as rate-monotonic analysis or 0
cyclic executives in uniprocessors. These simple uniprocessor techniques can be used for the indi-

q00

vidual processors in distributed parallel nodes, but analyzing the resulting system-wide response

requires decomposing the external end-to-end time constraints into smaller individual constraints

on partial computations, which is difficult and results in significantly sub-optimal resource utiliza-

tion throughout the architecture.

A key paradigm to render system development cost manageable in today's large systems is reuse.

With a few exceptions, the impact of software component reuse in the real-time systems under

consideration in this workshop has been very low in the software architecture, design and imple-

0 mentation, but this must change. This required increase in the use of reusable components in these

systems provides a further incentive to the creation of well-understood software architectures for
large, distributed, parallel real-time systems, since there can be little utilization of reuse on the
required scale unless the underlying software architectures are compatible.

0 SCHEDULING THEORY VERSUS DESIGN THEORY

Question 2: What should be the relationship between real-time Design Theory and real-time
Scheduling Theory in a design methodology for this class of systems?

The fact that scheduling theory assumes knowledge of periodicity and execution times is not
indicative of an implied assumption that the system has "already been designed", but is merely a
reflection of the fundamental nature of real-time systems, in the same sense as the assumption in a
missile design that the mas. of the missile is known. In either case, even though the eventual
design will certainly require changes and re-analysis throughout design and implementation, there
is no substitute for early estimation and tracking of these parameters. There can be no assurance
of the ability of a design to meet its timing constraints, either before or after the design is com-
pleted, regardless of the amount of testing, without this information. Note that the same is true of
the cost of the system; obviously the cost cannot be precisely determined before the design and
implementation is completed, but it will certainly be estimated as accurately as possible before
any substantive technical effort is expended, and tracked (and updated) throughout the design and
implementation of the system.

Additionally, the architecture that results from the answers to the architectural questions above
will have a critical impact on the ability of the resulting design to meet its time requirements.
Unlike many other design attributes, the ability to meet timing constraints is principally deter-
mined when the top-level architecture is defined, rather than in the myriad details that make up the
remainder of the design. This is true because of the tight coupling between the scheduling (i.e.,
the sequencing of all system resources to meet time constraints) design and the successful perfor-
mance of the system.

Thus, for the class of large, distributed, parallel real-time systems that are the subject of this work-
shop, it is critical that the Design Theory be heavily influenced by the Scheduling Theory. The
present immaturity of both for such systems is strongly apparent, and is particularly evidenced by
the fact that questions such as this are even being asked. The failure of a number of such systems
that have been built over the last several years to meet their time constraints provides abundant
evidence that it is the failure to create a real-time software architecture at the beginning of the
design process that has led to designs incapable or barely capable of meeting time constraints.

As an example, consider the pipeline architecture which is frequently used for such systems. In

this architecture, processing each input consists of a sequence of tasks, interconnected using any

al

a

of several message passing techniques. Such an architecture seems intuitively simple due to the

presence of multiple nodes in the distributed environment, and leads to significant amounts of

concurrency and resulting efficiency. However, such designs do not meet the basic requirements

of any of the known scheduling theories, all of which involve ensuring preference (e.g., priorities)

to tasks with tighter time constraints, and explicit control over inversions of this preference, par-

ticularly in the presence of the COTS "open" systems components frequently proposed for them.

Thus, combining Design Theory and Scheduling Theory, for this class of systems, is mandatory,
and should produce a Real-Time Architecture Theory which can then make extensive use of exist- 0
ing methodologies for subsequent decomposition into objects, abstract data types, or other popu-
lar constructions. The appropriate constructions for real-time systems can include only those that
are analyzable using a sound Scheduling Theory if unrecognized real-time performance problems
are to be avoided.

REAL-TIME VALIDATION AND VERIFICATION

Question 3: What is the best method for validating that large, distributed, parallel architecture
real-time systems behave as specified?

The combination of Design and Scheduling Theories is particularly critical to the ability to vali-
date the timing performance characteristics of a distributed real-time system for the same reason
that Design Theory alone is critical in validating the correct functional behavior of large, complex
systems. It is well known that software cannot be validated for correctness through testing alone;
this is especially a problem when systems become very large. The problems of time correctness
are, if anything, even more intractable, because a system with response time constraints will fre-
quently behave properly a large part of the time, failing only intermittently. In fact, timing failures
of real-time systems are almost always transitory (i.e., intermittent), with very similar characteris-
tics as intermittent hardware.

This fundamental intractability in the ability to test a system for meeting its response time con-
straints renders it even more important to ensure that the software architecture conforms to a valid S
theoretical timing model that will make the analysis of the system tractable. Only in this way can
the user be sure that not only does the system generally perform correctly, but that it is likely to
continue to perform correctly, even in the presence of heavy loads (including overloads).

This does not mean, however, that there is no role for testing. The significance of testing relative
to time constraints is to validate that the implemented system faithfully meets the individual time
constraints of its components, leading to the assurance that the system as a whole will have the
timing characteristics inherent in its design model. Similarly, the testing must verify that the sys-
tem faithfully conforms to its architectural structure. Thus, for example, if the system architecture
specifies that Task A sends messages only to Task B and Task C, that only those inter-task mes-
sages are transmitted by Task A, and that the message sizes fall within the limits defined. 0

DEVELOPING LARGE, DISTRIBUTED REAL-TIME SYSTEMS IN THE
FUTURE

Question 4: Given that resources were available to enhance the design and testing methodologies
for this class of systems, what are the most promising areas where these resources could be
applied?

92

a

1

Clearly, developing large, distributed, parallel real-time systems successfully is an extremely
complex process. The research domains most likely to yield important results would be those
attacking the software architectural issues described previously in this paper. Important research
has been ongoing for some years in the individual areas of real-time synchronization, communica-
tions, processor scheduling, memory management, and cache management, but additional work in
combining results from these areas into coherent archizectural strategies could help greatly. The
disciplines required must combine scheduling, software engineering, and fault management at a

* minimum. The skills and experience base needed for such a research program would likely be
available only through a team composed of both academic and development personnel.

93

November 9, 1992

Position Paper
on

Large, Distributed, Parallel Architecture, Real-Time
Systems

Kiell Nielsen

Hughes Aircraft Company

PO Box 3310, MS: 618/B223, Fullerton, CA 92634

(714)732-3849 (office)
(714)732-1953 (fax)

II

This position paper addresses the four issues listed in the announcement for

the Workshop on Large, Distributed, Parallel Architecture, Real-Time Systems

to be held at IDA March 15-19, 1993.

The positions stated on the various issues include experiences gained

and directions taken within Hughes regarding the system development process,

design methodologies, and the use of CASE tools. Hughes is a large and

diverse company and the stated positions do not necessarily reflect an overall,

uniform company policy with respect to methodology and tools.

Most of the language dependent design and implementation issues are

directed to Ada real-time systems, since Ada is the prevalent programming

language used on a significant number of large, distributed, real-time systems

being built. Ada also has a tasking model included at the application
programming level.

In discussions addressing general concurrent elements, e.g., Unix or

VMS processes, the term process is used. Concurrent elements in Ada are

referred to as tasks.

95

U

November 9, 1992

1. What Is the best method or methodology for designing large,

distributed real-time systems where processing elements may have

a pa'alsal architecture?

It is not sufficient to only consider a design methodology for the development of

large, distributed real-time systems. The scope should be expanded to include

an integrated system development process. The process will employ several

methodoiogies in the design and implementation of distributed systems. From

an organizational point of view, systems engineers, hardware engineers, and

software engineers should be involved in the process, i.e., concurrent

engineering.

Embedded within this engineering process must be a set of consistent

graphical representations that can be used to clearly identify products of

individual steps in the process, and that will clearly show the transitioning

activities from one step to the next. A system development process that

embraces concurrent engineering should include the following steps:

1. Domain analysis. 0
2. System requirements analysis

3. System design
a. Partitioning into

"* subsystems
"* hardware and software components
"* reusable software components

b. Configuring (allocating requirements to hardware and software)
4. Hardware design

5. Software requirements analysis (for each partition)

6. Software design
a. Process structuring (concurrency model)

b. Language dependent design, e.g., for Ada
"* Ada task structuring
"* class/object structuring (Ada packaging)

c. Software design evaluation

96

November 9, 1992

Two primary development approaches are currently in use for large,

distributed systems. The hardware-first approach utilizes all of the steps listed

above in the order suggested. There is a specific partitioning step to divide a

large system into a set of suitable partitions, followed by (and iterated with) a

configuring step which allocates system requirements to hardware and software

entities (modules). The requirements represented within eAch module are

designed and implemented in the specific programming language as virtual

nodes (VNs) that are mapped to the hardware elements. In Ada, for example,

VNs are collections of Ada packages, subprogram bodies, and task bodies that

implement the set of requirements allocated to a hardware element during the

partitioning/configuring activity. This is the traditional development approach for

decomposing a large system into partitions that can be implemented as

distributed processing elements (PEs).

The software-first approach skips the partitioning/configuring step of

allocating requirements to hardware and software. The software requirements

analysis is performed on a system wide basis (rather than for eacn partition),

and software elements are developed before the hardware architecture has

been determined. A hardware architecture is developed to support the software

solution, and VNs are mapped to the hardware elements. This approach can

be used successfully, for example, for the development of a product line, where

small, medium, and large systems will be constructed within the same problem

domain. Different hardware architectures are developed for the different size

systems, and the software representing each system is composed of reusable

software components.

A system development process and associated methodologies

supporting the six steps outlined above include:

1. ART [HAC92] - This is an integrated system development process that

addresses all of the six steps outlined above. Domain analysis is included

as the first activity to support reusability in-the-large [NIE92].

2. Real-Time Structured Analysis (RTSA) -- This is used as a methodology to

support both the system requirements analysis, system design, and software

requirements analysis. The methodology and notation is taken from Hatley-

Pirbhai [HAT88], with supplemental information from Ward-Mellor [WAR85a,

WAR85b, and MEL86], and Shumate-Keller [SHU92].

97

November 9, 1992

3. Information Modeling -- An information model is added to supplement the

Hatley-Pirbhai process and control models. The notation for the Entity

Relationship Diagrams (ERDs) is based on the description in [CHE76].

4. OOD with Ada - This is an object-based Ada design methodology for large

real-time systems [NIE88, NIE92, and SHU88a]. The transitioning from

ana!ysis to design is based on DARTS [GOM84]. Specific guidelines for

creating a process abstraction and Ada task structuring is included 0

[SHU88b]. The creation of VNs is based on certain structuring guidelines for

distributed Ada programs [ATK88, JHA89, VOL89, NIE90].

The primary CASE tools used to support ART include Software Through 0

Pictures (StP), developed by IDE, and Teamwork, developed by Cadre.
Neither of these two tools is fully integrated to support the complete

development process. Both vendors are currently working to improve the tool

support for additional steps of the development process. 0

It should be noted that none of the development steps or tools mentioned
support hardware design.

2. What should be the relationship between real-time Design
Theory and real-time Scheduling Theory In a design meth.,dology
for this class of systems?
Real-time design theory refers to a collection of features that pertain to a •

concurrency model of multiple processes executing in parallel on distributed
PEs. Processes may also compete for the use of the same PE, i.e., apparent

concurrency, as opposed to processes executing in different PEs with real

concurrency. We need to be able to handle both conditions. Some of the 0

features of real-time design theory [BEN82, LEV90] that apply to scheduling
include:

"* Safety - a concurrent element (process) must perform correctly independent 0

of the other processes in the system.
"* Liveness - two or more processes must exhibit the correct behavior in the

dynamic environment of asynchronous execution.

98

i

November 9. 1992

"* Adequate response time for critical events - e.g., interrupts must be serviced

in a timely fashion.
"* Schedulability - processes must be scheduled to execute and complete

their functions under certain system dependent time constraints.
"* Overload response - if all the processes in the system cannot meet their

deadlines, the selected critical processes must still be serviced to meet their
deadlines.

"* Mutual exclusion - certain sequences of instructions will be expected to
execute within a critical section. This does not apply directly to scheduling
events, but applies to distributed databases and multiple access of shared

data, and is important during synchronization of processes.
"* Priority inheritance - the precise timing of a priority assigned to a process

that will execute next during synchronization of two processes with different
priorities (e.g., in Ada the priority of the highest task is assigned at the start of
the rendezvous).

Real-time scheduling theory forms the basis for implementing the
scheduling features of the real-time design theory. It also allows the
implementers of real-time systems to analyze timing correctness and make
predictions about the expected system performance. Elements of real-time
44.hedi,,inn theory [SHA90, and LEVg01 include:

6 Scheduling mechanism -- can be based on round-robin, time-slicing

(deterministic) or a "fair" selaction method with preemption (non-
deterministic).

* Scheduling algorithms -- used to predict whether or not time-critical
processes will complete execution within required timing restrictions. The
most prevalent of these is hard deadline scheduling based on a set of

periodic processes: Rate-monotonic algorithm where the processes are
assigned priorities in reverse relation to their periodicities (shortest period
given highest priority).

* Fairness in scheduling - can be implemented by dynamically increasing the
priority of a process as the criticality increases (e.g., making a controlled

object avoid hitting an obstacle).

99

U

November 9. 1992

The current design methodologies should be expanded to include
guidelines for dealing with real-time considerations (e.g., safety, liveness,
schedulability, etc.). Specific heuristics should be developed for handling the 0

scheduling of concurrent processing elements. This should include aperiodic
as well as periodic tasks. These expanded design guidelines should be based
on known scheduling theories that cati reasonably be expected to be available
in run-time models, e.g., the current preemptive Ada tasking model and 0

proposed rate-monotonic mechanisms.

The design theory we use in our design methodology must be
implemented in the semantics of the process abstraction model. For example, it
does not make sense to try to implement critical, periodic tasks in the current 0

version of Ada-1983 which has a run-time implementation of an mat least"
condition for the expiration of a periodic task. It is important that design theory
methodologists and run-time implementers communicate effectively about their
respective needs and possible run-time implementation problems. As future 0
improvements of run-time systems are developed for real-time systems, we
must avoid the frustrating situations of the early Ada systems when the
designers tried to implement designs based on preemptive scheduling that did
not exist in the implementation model. The run-time developers had interpreted 0
the Ada Reference Manual to mean that preemption was not required.

3. What Is the best method for validating that large, distributed, 0
parallel architecture real-time systems behave as specified?

The validation of large, distributed real-time systems includes three primary
elements: (1) a set of plans and procedures for how the validation is to be 0
performed; (2) a training plan to ensure that the developers are implementing
the test plans and procedures in a consistent manner; and (3) a set of modeling
and test tools to support the validation process.

DoD-Std-2167A has received considerable (justified) criticism with 0
regard to a literal interpretation of the contents and order of its numerous
analysis and design documents, and the implication that it tends to dictate a
design methodology. Such a literal interpretation should, however, be
encouraged for the 2167A set of test documents which include a Softwarc Test 0

30 0 0

November 9, 1992

Plan, Software Test Description, and Software Test Report. An early focus of

the contents of these documents (even for commercial projects where 2167A is

not required) forces attention to the test phase as a process. A description of

test cases is prepared before the actual test phase begins, and helps to identify

the efforts required for unit testing and integration testing. Particular attention

should be paid to test cases and validation procedures to analyze the system

for deadlock, starvation, data integrity, schedulability of processes, and

communication performance.

A significant amount of training may be required before the test phase

begins to ensure that the developers understand the kind of testing required,

and that they will be following the test procedures. This is even more important

for distributed real-time systems where considerable challenges are presented

for validating real-time performance requirements. In many cases we are

finding that the developers are merely trying to get a system to run during the

test phase, when they should, instead, be testing a running system.

There is, unfortunately, no unique list of support tools that will guarantee

the complete validation of a distributed real-time system. Useful test tools

include code analyzers, static analyzers, test probes, and modeling tools.

Formal methods embedded within these tools must be clearly understood, in

particular, with regard to their limitations. Results in the form of metrics must be

used sensibly, and do not represent "proof of correctness." The use of

automated test tools should be encouraged during the entire development

period to

The overall test philosophy should be based on finding bugs as early as

possible in the development cycle. The validation process should occur

throughout the development cycle to give us a better product delivered to the

customer. To support this philosophy, we need a consistent error reporting

mechanism throughout the development cycle. A concentration of design and

coding errors in certain functional areas will focus our testing efforts to those

areas (but not to the detriment of other areas).

101

November 9, 1992

4. Given that resources were available to enhance the design and

testing methodologies for this class of systems, what are the most

promising areas where these resources could be applied? 0

4.1 Design Methodologies and Tools

The primary key to reusable designs in distributed systems is the degree of

transparency of the inter-process and inter-processor communication (IPC)

mechanism. Most of the distributed systems implemented today are designed

with a unique IPC mechanism of the "not-invented-here" variety. This is also

true to some extent for the underlying communication protocols regarding the

number of layers that are implemented.

Specific design guidelines should be established for the creation of

standardized IPC mechanisms based on the required functionality, e.g.,

broadcast, synchronous and asynchronous connection-oriented

communication, multicast, etc. The guidelines should include the use of

message passing, remote procedure calls (RPC), remote entry calls (REC), and

the use of shared data in heterogeneous and homogeneous architectures.

A set of standardized interfaces (bindings) should be developed for Ada,

C, and C++ programs for each of the IPC mechanisms developed. This will
promote truly reusable programs at the application interface level.

Design guidelines should be developed for implementing Ada, C, C++,

and mixed language programs in distributed architectures. This should include

alternatives to the use of the Ada tasking model. 0

Design guidelines should be developed for distributed database design

including a set of standardized locking mechanisms.

Funds should be made available to support the major tool vendors for

improving existing CASE tools for the most promising system design

methodologies.

4.2 Testing Methodologies and Tools 0

An important element of validating large, distributed real-time systems is the use

of prototyping. The traditional method of prototyping includes the use of throw-

away code as the complete system is implemented. A better approach is to

102

November 9, 1992

develop a set of prototyping tools that can aid in the debugging and

understanding of the system to be implemented, without developing throw-away

code. An example of such a tool is a device to simulate a particular bus or LAN

interface, e.g., Mil-Std-1553 or Ethernet. This device will simulate the bus or

LAN functions (e.g., the arbitration mechanism) and record the

stimulus/response activity with the distributed system. Such a device can be an

invaluable aid in understanding the distributed system in terms of transient

functions like startup, restart, and error detection and recovery.

A set of test cases has been developed for measuring the performance of

real-time features in Ada programs in uniprocessor architectures (available from

SIGAda's PIWG). A similar set of test cases could be developed for measuring

the performance of programs in multiprocessor architectures. Particular

performance features could include communication time latency and the

efficiency of the IPC mechanism., and schedulability. Special code analyzers

couid be developed to predict the potential for deadlock and starvation. The

reduction of these real-time risk areas before testing starts would greatly

enhance the validation process.

Dynam;c analyzers can be developed to measure the performance of a

distributed system in a truly asyichronous environment. The currently available

static analyzers don't help us here.

References

ATK88 Atkinson, C. et al., Ada for Distributed Systems, Cambridge University
Press, Cambridge, England ,1988.

BEN82 Ben-Ari, M., Principles of Concurrent Programming, Prentice-Hall
International, Inc., Englewood Cliffs, NJ, 1982.

CHE76 Chen, P., The Entity-Relationship Model - Toward a Unified View of
Data, ACM Trans. on Database Systems, Volume 1, Number 1, 1976.

GOM&4 Gomaa, H., A Software Design Method for Real-Time Systems,
Comm. ACM, Volume 27, Number 9, September, 1984.

HAC92 ART Guidebook - Volume Ih Development Process and Methodology;
Volume Ih: Case Studies and Exercises, Hughes Aircraft Company,
October 1992.

0 103

November 9. 1992

HAT88 Hatley, D.J. and Pirbhai, I.A., Strategies for Real-Time System
Specification, Dorset House Publishing, New York, 1988.

JHA89 Jha, R. et al., Ada Program Partitioning Language: A Notation for
Distributing Ada Programs, IEEE Transactions on Software
Engineering, Volume 15, Number 3, March 1989.

LEV90 Levi, S-T. and Agrawala, A.K., Real-Time System Design, McGraw- 0

Hill, New York, 1990.

MEL86 Mellor, S.J. and Ward, P.T., Structured Development for Real-Time
Systems, Volume 3: Implementation Modeling Techniques, Yourdon
Press, New York, NY, 1986. 0

NIE%1 Nielsen, K.W. and Shumate, K., Designing Large Real-Time Systems
with Ada, McGraw-Hill, New York, 1988.

NIE90 Nielsen, K.W., Ada in Distributed Real-Time Systems, McGraw-Hill,
New York, 1990.

NIE92 Nielsen, K.W., Object-Oriented Design with Ada: Maximizing
Reusability for Real-Time Systems, Bantam Books, New York, 1992.

SHA90 Sha, L. and Goodenough, J.B., Real-Time Scheduling Theory and
Ada, Computer, July 1987.

SHU88a Shumate, K., Layered Virtual Machines/Object-Oriented Design
(LVM/OOD), in Proceedings of the Fifth Washington Ada Symposium,
ACM, June 27-30, 1988, Washington, DC.

SHU88b Shumate, K., Understanding Concurrency in Ada, McGraw-Hill, New
York, 1988.

SHU92 Shumate, K. and Keller, M., Software Specification and Design: A
Disciplined Approach for Real-Time Systems, John Wiley, New York,
1992.

VOL89 Volz, R.A. et al., Translation and Execution of Distributed Ada
Programs: Is It Still Ada? IEEE Transactions on Software Engineering,
Volume 15, Number 3, March 1989.

WAR85a Ward, P.T. and Mellor, S.J., Structured Development for Real-Time
Sysins, Volume 1: Introduction & Tools, Yourdon Press, New York,
NY, 1985.

104

0

November 9, 1992

WAR85b Ward, P.T. and Mellor, S.J., Structured Development for Real-Time
Systems, Volume 2 Essential Modeling Techniques, Yourdon Press,
New York, NY, 1985.

105

Large-Scale Distributed Real-Time Computing
Lui Sha

Ragunathan Rajkumar
Software Engineering Institute

Carnegie Mellon University

1.0 Introduction
Real-time computing and communication systems are critical to an industrialized nation's techno-
logical infrastructure. Modem telecommunication systems, automated factories, defense systems
and air-traffic control systems cannot operate without them. Indeed, real-time computing and
communication systems control the very systems that keep us productive, make our manufactur-
ing processes competitive, enhance our security, and enable us to explore new frontiers of science
and engineering. The explosive growth of applications executed dependably in real time is envi-
sioned in diverse areas such as battlefield simulations, C3I systems, high-bandwidth multimedia
communications, and distributed flexible manufacturing.

The key requirements for advanced real-time systems are predictability, dependability and perfor-
mance. A real-time system's timing behavior should be predictable before it is developed or mod-
ified. The system must have the ability to tolerate the failure of individual subsystems and provide
a high degree of performance. The most significant developments in these areas are the general-
ized rate-monotonic scheduling theory that provides a theoretical foundation for the development
of predictable real-time systems, the membership-based fault-tolerance protocols that allow flexi-
ble management of redundant resources, gigabit networking technology, high-performance RISC
processors and parallel processing architectures.

The DoD 1991 Software Technology Strategy document refers to RMS as a "major payoff" and
states that "System designers can use this theory to predict whether task deadlines will be met

0 long before the costly implementation phase of a project begins. It also eases the process of mak-
ing modifications to application software,..." The Acting Deputy Administrator of NASA recently
stated in a 1992 speech entitled Charting The Fuure, 'Mrough the development of Rate Mono-
tonic Scheduling, we now have a system that will allow (Space Station) Freedom's computers to
budget their time, to choose between a variety of tasks, and decide not only which one to do first

* but how much time to spend in the process." The RMS approach is also cited in the Selected
Accomplishments section of the National Research Council's 1992 report, A Broader Agenda for
Computer Science and Engineering. Our GRMS approach has also been rapidly gaining accep-
tance in the industry, and has been applied to national high-technology projects such as BSY-1,
BSY-2 and NASA's Space Station. Scheduling support for the use of generalized RMS can now
be found in major national hardware and software standards such as Ada 9x, IEEE POSIX.4, and
the IEEE Futurebus+ bus standard.

To advance the state of real-time computing, it is important to build upon these successes. Thus,
we propose to extend GRMS [2,3,4,7] in the context of a very large-scale distributed computing
system where the communication delays make it impossible for each scheduler to have timely and

0 complete system state information. Furthermore, we must create a unified framework for high-
performance real-time fault-tolerant computing. This unified framework should provide an appli-
cation infrastructure that employs high-performance computers and networks. Such systems must

107

handle high-volume synchronized video, audio and text as well as real-time data streams with dif-
ferent periodicities and latency requirements from radar, hydrophones, satellite and other mea-
surement instruments. Users of these systems can virtually visit different gtographical locations,
and get a "first-hand view" of the situation. Global assessment can be facilitated by gathering
information from different points at a single decision point. In large-scale complex systems, com-
ponent failures and application software errors are inevitable. The ability of the unified frame-
work to deal with software and hardware errors can greatly enhance the reliability, functionality
and flexibility of C31 systems, air traffic control systems, modern mass-transportation systems,
automated factories and defense applications such as nationwide battlefield simulations.

2.0 Fundamental Challenges

To develop an application infrastructure for large-scale distributed real-time cliipu.ing, there are
some fundamental challenges that we must meet.
" Decisions in this distributed environment must be made in decentralized fashion from both

dependability and performance points of view. However, due to the geographical distribution
of subsystems, propagation delays can be excessive, and decisions must be based on delayed
and sometimes even incomplete information. Nevertheless, the distributed scheduling actions
must be consistent.

" Dependability requires that individual subsystem faults do not crash the entire system. In par-
ticular, two critical yet complementary aspects must be addressed. First, an approach to deal
with the increasingly serious problem of application software errors is necessary. Secondly, we
need the analytical foundations and system primitives to deal with failures of hardware and
software resources.

2.1 Maintaining Coherence in Distributed Scheduling Actions
As network speed and the physical distances between nodes increase, the state of the system is
distributed. This has been recognized as a key problem of the Core CS&E research Agenda for the
Future of the 1992 National Research Council's report titled, A Broader Agenda for Computer
Science and Engineering. It states, "A network is an interconnected system, with many possible
paths for feedback to any given node the inability to predict just when these feedback effects
will occur presents many problems for system designers concerned about avoiding catastrophic
positive feedback loops that can rapidly consume all available bandwidth".

Fortunately, we have already solved this problem for the special case of a wide area dual-link net-
work [51. A dual-link network consists of two unidirectional links carrying traffic in fixed size
cells in opposite directions. This can be considered as a special case of a network of switches with
only two connections. The bandwidth usage requirements of downstream stations is fed back by
setting a request bit in a cell flowing in the opposite direction. However, such feedback is delayed
due to large distance. Furthermore the bandwidth requirements of upstream stations will never be
known by the downstream stations. Thus, stations in a large high speed network must make
scheduling decisions with incomplete and delayed information. The challenge is to achieve pre-
dictable operation under these circumstances.

We have developed a theory of coherent dual-link networks and a coherent scheduling protocol
that ensures that the system will be consistent despite its distributed state [5]. Under this protocol,

108

trafc in a dual-link network is transmission-schedulablel when an equival-nt centralized system
is schedulable. It is important to generalize this notion to an arbitrary network topology.

2.2 Software Fault -Tolerance and Analytic Redundancy
Statistics of large computing systems show that the probability of a system failure due to software
bugs is about ten times that due to hardware faults. Therefore, in brief, we must be able to deal
with software errors to have a reliable real-time system. To deal with software faults, some form

0 of redundancy in computation is needed. Direct redundancy uses different programs to compute
the same results so that voting or mid-value selection can be used. An example of direct redun-
dancy for software fault tolerance is N-version programming. The fundamental problem with
direct redundancy is that it is costly and independently developed software can still have common
errors. The source of software faults is complexity.To successfully deal with software faults, we

0 must let simplicity control complexity.

This approach is realized by the use of analytic redundancy [6]. Under this approach, programs
with different complexities will compute different results that are analytically related. Particu-
larly, w* will develop a trusted simple software system which will give us a baseline answer on
time plus a set of confidence assertions. A confidence assertion is a generalization of the statistical

I concept of confidence interval, which creates an "envelope" within which the solutions from the
complex must lie. The complex software is not trusted. Its outputs must be consistent with the
confidence assertions produced by the simple software or they will be discarded. Furthermore, we
are not even able to trust the computation process employed by the complex software, which may
have serious bugs that can crash the computation process itself.

P To illustrate the use of analytic redundancy, we found that it was useful to classify software errors
into three types for the purpose of detection and recovery. We shall use tracking as an example to
illustrate this concept.

"* Inaccuracy: In the context of our applications, these are tracking errors, which are a function of
the quality of the data and the sophistication of the tracking algorithm. Due to the nature of the

p application, such errors can only be reduced but not eliminated. Design or implementation
errors in software development can also contribute to tracking errors.

" 7irming faults: These typically occur in the form of missed deadlines. While software design
and implementation errors may lead to timing faults, a major source of timing faults is the
time-complexity of the algorithms. The difficulty in tracking applications is that sophisticated
algorithms may reduce the number of tracking errors but contribute to timing faults.

"* Programming system faults: These are those serious software faults that may crash the system,
for example, illegal addresses or data, exhausting available buffers, monopolizing the I/O
channels and/or CPU.

Figure 1 is a model which compares the characteristics of a simple software system with those of

a complex software system.
The software architecture used to deal with these faults is known as the Simplex Software Archi-
tecture. This architecture employs: (I) analytic redundancy to guard against application level soft-
ware errors, (2) runtime isolation and fault containment techniques to guard against programming
system level software errors such as illegal addressing, and (3) generalized rate -monotonic

1. A connction is msmimsson-edulable if it can guanmtee nansmission of C cells per period T.

109

Timing Fauft 0

runtime monitoring and error
containment

scheduling •

-- System Fauft

Inaccuracy analytic redundancy

FIGURE 1. Conceptual Model to build Dependable Real-rime Systems

scheduling techmques to guard against uning errors. Pigure I is the concepatua model that Mus-
trates the combined use of scheduling, runtime fault containment and analytic redundancy to
improve the overall functional performance and reliability.

2.3 System-Level Failure Management in Distributed Real-Time Systems
Distributed gigabit network based real-time systems must be robust and fault-tolerant However,
the construction of distributed fault-tolerant real-time systems bring new challenges. Processor
and network schedulng must be carried out coherently with the support mechanisms for fault-tol-
erance. In addition, these integrated mechanisms must be supported by all system layers. General-
ized RMS already provides a solid foundation in processor and bus scheduling for real-time -
systems. A critical system issue is the need for application-independent support at the system-
level to build dependable real-time systems. Such support will greatly enhance the ability to toler-
ate a wide range of system faults (along the system fault dimension of Figure 1) including the fail-
ures of processors, communication links and interfaces, process creation, and communication
protocols.
Traditionally, there has been a misconception that priority-based scheduling techniques cannot
ensure determinism when redundancy techniques are used. As a result, most if not all real-time
fault-tolerant systems use cyclical executives that employ lock-step execution and comparison of
redundant components. However, the only necessary correctness criterion is the need to maintain
I/O determinism in redundancy management and the interface to the external environment

110

GRMS can be used as the basis to provide I/O determinism while still allowing different programs

to execute on redundant processors. However, the protocols to detect and recover from faults on a

timely basis must be developed. The critical factor for developing these protocols is that a timely

and consistent view of the state of the distributed system resources is maintained despite failures.

We are currently u:,veloping an analytical approach and system primitives to provide system-level

support for tolerating and/or recovering from processor, process and communication failures in

distributed real-time systems. The key element behind system-level fault-tolerance is the real-

time management of spatial redundancy to achieve dependable system operation even in the pres-

ence of resource failures.

3.0 Summary and Conclusion

Real-time computing and communication systems are critical to an industrialized nation's techno-

logical infrastructure. Modem telecommunication systems, automated factories, defense systems

and air-traffic control systems cannot operate without them. The key requirements for advanced

large-scale real-time systems are predictability, dependability and performance. A real-time sys-

tem's timing behavior should be predictable before it is developed or modified. It should have the

ability to tolerate the failure of individual subsystems while providing a hieh degree of perfor-
mance. Significant developments in these areas are the generalized rate-monotonic scheduling
theory which provides a theoretical foundation for developing predictable real-time systems,
membership-based fault-tolerance protocols for flexible management of redundant resources,
wide-area gigabit networks, and high-performance RISC and parallel processing architectures., It
is important to build upon the successes of GRMS in industry, high-technology projects and com-
mercial standards.

We propose to extend GRMS in the context of a very large-scale distributed computing system
where the communication delays make it impossible for each scheduler to have timely and com-
plete system state information. Furthermore, we must create a unified framework for high perfor-
mance real-time fault tolerant computing. This unified framework should provide an application
infrastructure that allows us to develop advanced large-scalereal-time systems.

References
(1] J. P. Lehoczky and L. Sha, "Performanc of real-time bus scheduling algorithms," ACM Performance Evalua-

tion Review. Special Issue, voL 14, May 1986.

[2] C. Liu and J. Layland, "Scheduling algorithms for multiprogramming in a hard real-time environment," Journal
of the ACM, voL 30, pp. 46-61, January 1973.

(3] L Sha and J. B. Goodenough, "Real-time scheduling theory and Ada," IEEE Computer, vol. 23, pp. 53-62,
Apri 1990.

(4] L Sha, R. Rajikumar, and J. P. Lehoczky, "Priority inheritance protocols: An approach to real-time synchroniza-
tion," IEEE Transactions on Computers. vol. 39, pp. 1175-1185, September 1990.

[5] L Sha, S. Sathaye, and J. KL Strosnider, "Scheduling real-time communication on dual link networks," 13th
IEEE Real-Time Systems Symposium, December 1992.

[6] L Shu, J. P. Lehmczky, M. Bodson, P. Krupp and C. Nowacki, "Responsive Airorne Radar Systems", Proceed-
ings of the 2nd International Workshop on Responsive Computer Systems, October, 1992.

[7] H. M. B. Sprunt, L. She and J. P. Lehoczky, "Aperiodic Task Scheduling for Hard Real-Time Systems", Real-
Time Systems Journal, 1919.

111

An Integrated Approach to Design and Development
of Large Distributed Real-Time Systems

A Position Statement

Sang H. Son
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22=903

As the complexity of new applications of large distributed real-time systems increases, so does the

need for improvement for real-time system design and development methodology. The critical nature of

many real-time systems requires a rigorous design and development of their components, and validation

of timing characteristics. The traditional approach that carries out the tasks of system modeling, timing

verification, and system implementation rather independently, seems inadequate for developing a large

distributed real-time system partly because

(1) verification of timing-related properties has limitations, especially in distributed/parallel environ-

merits,

(2) timing characteristics are very hard to determine in the early stages of design.

(3) it may introduce inconsistencies between the model and the implemented system,

(4) due to high cost and long development time, it is often too late when problems am discovered at

system integration time.

For example, it is very hard to determine, during the design phase, the synchronization and com-

munication requirements among tasks that will be distributed to several nodes in the implemented system.

However, the scheduler at each node should rely on that information to provide predictable timing

"7ho wink was uamyniD mpma by ORN by CT. mud by IBM Frmi Saw= Dnidm

113

behavior. Furthermore, to have a complete design, we need to decide which scheduling algorithms are to

be used for which resources at design time. We can make worst case assumptions in many cases, but

there should be a facility to test the impact of the design assumptions on the timing characteristics of the

system. Making worst case assumptions for designing a real-time system that can ensue correct opera-

tion even in the situations with maximum need potentially wastes large amounts of resources. In some

applications of large distributed real-time systems, the worst case need may be unbounded.

It seems clear that we need a new integrated approach to design, development, and verification of

large distributed real-tipe systems. It should provide a facility to evaluate the timing constraints in the

early stage of the system design, and to monitor their impact during system implementation- Such an

environment dedicated to the design and development of real-time systems must support many facilities

that ame not present in current programming environments. Recently, there have been attempts to provide

an integrated environment for real-time system design, development, and evaluation [Son92, Bar9l,

Ran9l, Jah9l3 However, this is the area to which more support for active research and investigation

seems necessary due to its high potential for significant benefits to overall system design and develop-

ment.

Given the functional and timing specifications for a real-time system, the first callenge is to vali-

date that there exists no inconsistency in the specification. This is a non-trivial task. Even though there

has been a considerable research effort in this area of verifying the specification (e.g., RTL and

Modechart from UT Austin MSuOO]), applicability of those formal methods to practical problems has

several limitations.

Assuming that the specification is validated to be consistent and feasible, we need to come up with

an initial system design. At this stage, we only have very rough idea about resource and synchronization

requirements of tasks. The integrated environment should provide a tool that can help the designer to

develop a top-level design from the given specification. The object-oriented approach seems appropriate

for this type of tool, because the external behavior of each component (or object) can be specified without

114

going through the internal implementation details. Even though there are several tools and methods

developed for real-time system design (e.g., [Fau92]), their capabilites are not tested yet for large and

complex real-time systems.

The next step is to develop a prototype of the system according to the initial design. The prototype

consists of modules that represent system components in the initial design. Modules for which the imple-

mentation has not been determined or for the hardware component which is not yet available can be simu-

lated. The simulated part estimates resource/symnchronization r,,•'! meflts of the physical object that it

represents. The timing constraints and functionalities of the given specification can be tested using the

prototype. If the initial design does not satisfy the given specification. the design should be refined. In

some cases, the initial design may need to be abandoned and totally redesigned. This refinement process

will continue until we have a stablized system design and prototype that satisfies all the requirements. By

following this iterative refinement and its prototyping, we can evaluate the impacts of the design choice

early in the design stage and make necessary changes.

One of the benefits of this integrated design approach is that the designer can check out whether the

design philosophy under which the system is being developed is appropriate for the currnt application.

For example, in the early design stage, we need to decide on the philosophy for resource managemenL In

most real-time systems, the responsibility of resource management is typically shared by the operating

system and the application, partly because it is the application that knows about requirements and seman-

tic information necessary to support timeliness even in the presence of overloads and faults. There is a

spectnum of design approaches to dividing responsibilities between the two, and the decision depends pri-

marily on the design philosophy and methods used to build applications [Nat92]. At one extreme, the

cperating system provides no special support, and the total responsibility is on the application. At the

other extreme, the operating system takes all the responsibility for scheduling with no information from

the application. These two extremes are convenient in the sense that the operating system and the applica-

tion do not need to share application-specific semantics. However, for the same reason, the capabilities of

those approaches are inherently limited. Using the integrated approach, we can test out not only two

115

extremes. but also different approaches rather easily.

Other example to demonstrate the benefits of this approach is the choice of scheduling

algorithms/policies. Contrasted with non-real-time systems in which a relatively simple scheduler

chooses a ready job non-deterministically without considering timing requirements, schedulers in real-

time systems must use a variety of information and selection criteria. The many choices and variations in

terms of scheduling policies makes it almost impossible to know which choice would perform better,

without actually testing them against the given requirements. If we know the execution time and block-

ing time of each task. we may be able to perform schedulability analysis using certain scheduling

theories. However, those timing characteristics can be estimated only after we determine the scheduling

policies. This shows why the integrated design approach combined with prototyping is beneficial. We can

plug in different scheduling policies into the prototype and test their timing behavior.

Another important requirement for the integrated approach is to provide modeling capability for not

only the target system but also the operating environment. To achieve that, the integrated design approach

should support the running of the prototype under the proposed operating environment Some of the facil-

ities that anm necessary include

(1) generate external events,

(2) change the values of conditions,

(3) update variables and other data elements,

(4) trigger state changes,

(5) activate/deactivate task activities.

The testing/debugging phase usually constitutes a large proportion of the total system development

time. Due to the critical role played by large distributed real-time systems, it is almost always necessary

to enforce the highest level of quality assurance to be employed for testing. With the advent of more

ambitious applications of large distributed real-time systems. such as NASA's space station project, test-

ing and validating the quality of the developed software becomes more costly and time comnsming. Any

116

small reduction of the complexity of the testing phase, while mainmining the same guarantee of system

performance, may result in a substantial benefit to the system development effort. The integrated design

and development approach can substantially reduce the amount of work involved in testing to ensure tim-

ing constraints.

To summarize, the major advantages of the integrated approach to design and development of real-

time systems include

(1) It allows timing properties of a real-time system being designed/developed to be analyzed in early

stages of the system development cycle.

(2) It allows the functional correcmess to be tested, while permitting reduced effort to redesign the

system and/or cc'--onents.

(3) It allows to verify the assumptions made during the design phase.

(4) It encourages reusability of system components.

References

[Bar9l] R. Bargodia and C. Shen, MIDAS: Integrated Design and Simulation of Distributed Systems,
IEEE Trans. on Software Engr., voL 17, no. 10, Oct. 1991.

[Fau92] S. Faulk :t al, I"= Core Method for Real-Tame Requirements, IEEE Software, voL 9, no. 5,
Sept. 1992.

[Jah91] F. Jahanian and R. Rajkumar, An Integrated Approach to Monitoring and Scheduling in Real-
Time Systems, IEEE Workshop on Real-Time Operating Systems and Software, Atlanta, Geor-
gia, May 1991.

[Nat92] S. Natarajan and W. Thao, Issues in Building Dynamic Real-dme Systems, IEEE Software,
vol. 9, no. 5, Sept. 1992.

[Ran9I] K. Ransom, C. Marlin. and W. Zhao, An Integrated Environment for the development and
Analysis of Hard ReaJ-Time Systems. i. WorLshop on Real-Time Operating Systems and
Software, Atlanta, Georgia, May 1991.

[Son92] S. H. Son, An Environment for Integrated Development and Evaluation of Real-Tume Distri-
buted Database Systems, Journal of Systems Integration. voL 2, no. 1, February 1992.

[StuMO] D. Stuart, Implementing a Verifier for Real-Tine Systems, RTSS '90, December 1990.

117

Guarantees of Hard Real-Time Communications in FDDI
Networks,

Wei Zhao
Department of Computer Science

Texas A&M University
College Station, TX 77843

zhao0@cs.tamu.edu

1 Introduction

We concern with deadline guarantees in distributed hard real-time systems. In particular, we address
issues in guaranteeing hard real-time message delivery in an FDDI (Fiber Distributed Data Interface)
network.

It has become a common practice to use digital computers for embedded real-time applications
such as space vehicle systems, image processing and transmission, and integration of expert systems
into avionics and industrial process control. A salient feature of these computations is that they have
stringent timing requirements. A timing failure could lead to catastrophe. Further, these systems
are often distributed. This is not only because the applications themselves are often physically
distributed, but also due to the potential that distributed systems have for providing good reliability,
good resource sharing, and good extensibility [19, 44, 52].

The key to success in using a distributed system for these applications is the timely execution of
computation tasks that usually reside on different nodes and communicate with one another to ac-
complish a common goal. End-to-end deadline guarantees are not possible without a communication
network that supports the timely delivery of inter-task messages. On the other hand, despite efforts
to make the system reliable, faults may still occur due to a severe working environment and failing
components. The main focus of our work is to address some important issues related to fault-tolerant
guarantees of synchronous message deadlines, i.e., no matter what happens (even in the presence of
a network fault), the messages will be transmitted before their deadlines.

We have selected FDDI (Fiber Distributed Data Interface) networks for this study. FDDI is
an ANSI standard for a 100 Mbits/sec fiber optic token ring network [2, 3]. FDDI is suitable for
real-time application not only because of its high bandwidth but also due to its bounded access time
and its dual ring architecture. Since the early 1980's, extensive research has been done on the FDDI
networks. The FDDI MAC protocol was first proposed by Grow [12). Ross [34, 35, 36], Iyer and Joshi
[14, 15] and others [25, 43] provided comprehensive discussions on the timed token protocol and its
use in the FDDI. Many new civil and military networks are being developed based on the skeleton
of FDDI. Examples include the High-Speed Data Bus and the High-Speed Ring Bus (HSDB/HSRB)
[37, 38, 46), the Survivable Adaptable Fiber Optic Embedded Network (SAFENET) [11, 20, 26], and
FDDN (Fiber Distributed Data Network) [9]. Many embedded real-time applications use FDDI as
backbone networks. For example, FDDI has been selected as a backbone network for NASA's Space
Station Freedom 18, 7, 50].

Our work is motivated by recent advances in the theory of hard real-time scheduling[48, 49]. For
real-time systems, the basic design requirements for a communication protocol and for a centralized
scheduling algorithm are similar: both are constrained by time to allocate a serially used resource
to a set of processes. Liu and Layland [23] addressed the issue of guaranteeing the deadlines of
synchronous (i.e., periodic) tasks in a single CPU environment. They analyzed a fixed priority
preemptive algorithm, called the rate monotonic algorithm, that assigns priorities in inverse relation
to task's periods. They showed that the Worst Case Achievable Utilization of the algorithm is 69%.
Provided that the the utilization of the task set is no more than 69%, the task deadlines are always
guaranteed to be satisfied. The algorithm was also proven to be optimal among all fixed priority
scheduling algorithms in terms of achieving the highest worst case utilization. The rate monotonic

'This work is supported in part by grants from the Air Force Office of Scientifc Research, the National Science
Foundation, the Office of Naval Research, the Research Institute for Computing and Information Systems of the
University of Houston - Clear Lake, and Texas A&M University.

119

scheduling algorithm has been subsequently extended by many researchers [40], and is used in many
hard real-time applications [10].

Intuitively, one would believe that a communication protocol that implements the rate monotonic
transmission policy is the most desirable for a real-time communication environment. However,
implementation of the rate monotonic policy requires global priority arbitration every time a node
in the network is ready to transmit a new message. FDDI does not support priority arbitration at
the medium access control level. Consequently, it is difficult, if not impossible, to implement the
rate monotonic transmission policy in an FDDI network.

However, the methodology for analyzing the rate monotonic algorithm has a more profound
significance than merely its relevance to the fixed priority preemptive algorithms. The methodology
stresses the fundamentai requirements of preaictability and of stability in hard real-time environments
and is therefore also befitting to other hard real-time scheduling problems. In this methodology the
Worst Case Achievable Utilization is used as a metric for evaluating the predictability of a scheduling
algorithm. As long as the CPU utilization of all tasks is within the bounds specified by the metric,
all tasks will meet their deadlines. This metric also gives a measure of the stability of the scheduling
algorithm in the sense that the tasks can be freely modified as long as their total utilization is held
within the limit. Because of this, we adopted the same methodology in our study of guaranteeing
message deadlines in FDDI networks. We analyze the run-time control schemes of FDDI networks
for hard real-time communication based on the Worst Case Achievable Utilization.

2 Network and Message Models

We consider a network consisting of two counter-rotating rings. Each ring consists of m nodes
connected by point-to-point links forming a circle i.e., the token ring. The two rings will be denoted
ring A and ring B. We denote the ring latency by r which includes the ring propagation delay', the
node latency delay, the transmission delay of the token, etc. Thus, T is the walk time of the token
when none of the nodes disturD it. The ratio of the ring latency T to the target token rotation time
(TTRT) is denoted by a. The usable ring utilization would therefore be (1 - a) [47).

A node can connect either to one of the rings or to both. A node can transmit and receive
messages from a rirg only if the node connects to it. For those nodes that are connected to two
rings, we assume that they have dual facilities for transmitting and receiving messages on both rings.
Hence, the node can simultaneously transmit/receive messages on both rings.

Messages generated in the system at run time may be classified as either synchronous messages
or asynchronous messages. We assume that there are nA (riB) streams of synchronous messages, 0
S1, S2 ... ,SnA(Sn,1) in the system which form a synchronous mess -e set, MA(MB), for ring A
(ring B), i.e.,

MA ={S S 2 ,..,SnA)(1)

and

MB = S1,S 2,..., }Sn . (2)

For the convenience of our discussion, we use the notation M to denote either MA or MB. Similarly,
n denotes either nA or rnB.

Messages have the following characteristics:

1. Synchronous messages are periodic, i.e., messages in a synchronous message stream have a
constant inter-arrival time. We denote the period of stream Si (i = 1,2,.. ., n) by P,.

2. The deadline of a synchronous message is the end of the period in which it arrives. That is, if
a message in stream S, arrives at time t, then its deadline is at time t + p,. 2

2This assumption may be relaxed.

120

3. Messages from different streams are independent in that message arrivals do not depend on the
initiation or the completion of transmission requests for other messages.

4. The length of each message in stream Si is C, which is the maximum amount of time needed
to transmit this message.

5. Asynchronous messages are non-periodic and do not have explicit deadline requirements.

The Utilization factor of a synchronous message set, U(M) is defined as the fraction of time spent
by a ring in the transmission of the synchronous messages. That is,

U(M) = • (3)
PiG

where n is the number of synchronous message steams.

A subset of messages, denoted by MC, are mission critical. That is,

Mc C MA U MB. (4)

The objective of our study is to develop technology that guarantees the message deadlines of MA
and MB under normal conditions, and guarantees the message deadlines of Me when a network fault
occurs. To facilitate this fault tolerant guarantee of mission critical messages, we assume that nodes
which are required to transmit/receive a critical message are connected to both rings. In this way,
once a fault occurs on one ring, another ring can be used to transmit/receive critical messages.

Without loss of generality we assume that there is one stream of synchronous messages on a node
per ring (i.e., m = n). We can formally prove that an arbitrary token ring network where a node
may have zero, one, or more streams of synchronous messages to transmit can be transformed into
a logically equivalent network with one stream of synchronous message per node.

3 Synchronous Capacity Allocation

3.1 Timed Token MAC Protocol

Guaranteeing message deadlines requires the proper control of medium access. This is the function
of a medium access control (MAC) protocol. FDDI uses the timed token MAC protocol in which
messages are segregated into separate classes: the synchronous class and the asynchronous class
[12]. Synchronous messages arrive at the system at regular intervals and may be associated with
deadline constraints. The idea behind the timed token protocol is to control the token rotation
time. During network initialization, a protocol parameter called the Target Token Rotation Time
(TTRT) is determined which indicates the expected token rotation time. Each station is assigned
a fraction of the TTRT, known as its synchronous capacity 3. which is the maximum time a station
is permitted to transmit synchronous messages every time it receives the token. Thus, once a node
receives the token, it transmits its synchronous messages, if any, for a time no more than its allocated
synchronous capacity. It can then transmit its asynchronous messages only if the time elapsed since
the previous token departure from the same node is less than the value of TTRT, i.e., only if the
token arrives earlier than expected.

Guaranteeing a message deadline implies that the message will be transmitted before its deadline.
With a token passing protocol, a node can transmit messages only when it captures the token.
Hence, if a message deadline is to be guaranteed, the token should visit the node, where the message
is waiting, before the expiration of the message deadline. That is, in order to guarantee message
deadlines in a token ring network, it is necessary to bound the time between two consecutive visits
of the token to a node (called the token rotation time or access time). The timed token protocol

"3Some other synonymous terms that researchers use are: Bandwidth allocation, Synchronous allocation, Synchronous
bandwidth assignments, and High Priority token holding time.

121

a

possesses this property. In (18, 39], Johnson and Sevcik formally proved that when the network
operates normally (i.e, there is no failure), the token rotation time between two consecutive visits to
a node is bounded by twice the expected token rotation time (i.e., 2 • TTRT).

Although the prerequisite of 'bounded token rotation time' is indispensable, it is however inad-
equate for guaranteeing message deadlines. A node with insufficient synchronous capacity may be
unable to complete the transmission of a synchronous message before its deadline. On the other
hand, allocating excess synchronous capacities to the nodes could increase the token rotation time,
which may also cause message deadlines to be missed. Thus, guaranteeing message deadlines is also
dependent upon the appropriate allocation of the synchronous capacities to the nodes.

3.2 Allocation Schemes

Definition and Examples

Denote Hi as the synchronous capacity of node i for a particular ring. The synchronous message
parameters (given by the Cj's and P,'s) at the various stations, the value of TTRT, and the ring
latency 7 should be the dictating factors for the allocation of the Hi's. We define a synchronous 0
capacity allocation scheme as an algorithm that, given as input the values of all Ci and Pi in the
message set and the values of TTRT and r, will produce as output the values of the synchronous
capacities Hi to be allocated to each station i in the network.

Let function f represent an allocation scheme. Then,

(A,112,.. .,H1) = f(C 1 ,C2 ,....C,,P 1,P2 ,.. .P,,TTRT,'r). (5)

Some of the allocation schemes which we consider are listed below:

e Full length scheme. In this scheme the synchronous capacity allocated to a node is equal to
the total time required for transmitting its synchronous messages, i.e.,

Hi = C,. (6)

This scheme attempts to transmit a synchronous message arriving at a node in a single turn
rather than splitting it into chunks and distributing its transmission evenly over its period P,.

@ Proportional scheme. In this scheme the synchronous capacity allocated to node i is propor-
tional to the ratio of C, and Pi at node i, i.e.,

Hi = C(TTRT - r). (7)

* Equal partition scheme. In this scheme the usable portion of TTRT is divided equally among
the n nodes in allocating their synchronous capacities, i.e.,

TTRT - (Hi = ,(8)

where n is the number of nodes in the system.

e Normalized proportional scheme. In this scheme the synchronous capacity is allocated accord-
ing to the normalized load of the synchronous messages on a node, i.e.,

Hi = fL (TTRT (9)

where U = Z=1 C,/PI. 0

122

e Local scheme. In this scheme, the message length is divided by the worst case number of
token visits to a node during a single message period:

Hi = - Li (10)
LP/ZTTRTJ - I

Note that this scheme allocates the synchronous capacity without using information regarding
messages on other nodes. This is advantageous for run-time network management. If the
parameters of a message stream at a node change during run-time, a local allocation scheme
need only adjust the synchronous capacity of the node involved. Other nodes are not disturbed.
That is, the entire network can continue its normal operations while individual nodes change
their synchronous capacities in response to changing message parameters.

Constraints

* The synchronous capacities allocated to the nodes by any scheme must satisfy two constraints in
order to ensure that real-time messages can be transmitted before their deadlines and that the timed
token protocol requirements are satisfied.

* Protocol Constraint: The sum total of all the synchronous capacities allocated to all the nodes
in the ring should not be greater than the target token rotation time minus the token walk
time, i.e.,

F Hi :5 TTRT - r". (

i=1

* Deadline Constraint: The allocation of the synchronous capacities to the nodes should be such
that the synchronous messages are always guaranteed to be transmitted before their deadlines.
In other words, if zi is the minimum amount of time available for node i to transmit its
synchronous messages in a time interval (t, t + PF), then

xi Ž C> . (12)

Note that zi will be a function of Hi and the number of token visits to node i in the time
interval (t,t + P,).

Formally, we say that a set of synchronous messages is guaranteed by an allocation scheme if both
the protocol and the deadline constraints are satisfied. Once a message set is guaranteed, messages
will be transmitted before their deadlines as long as the network operates normally.

Performance Metric

Obviously, there are many ways to construct synchronous capacity allocation schemes. We would like
to classify and evaluate allocation schemes so that proper recommendations can be made to network
designers and managers on what allocation schemes to use. An appropriate metric must first be
selected in order to evaluate and compare the effects of synchronous capacity allocation schemes on
the performance of FDDI networks.

As mentioned earlier, we adopt the methodology developed in analyzing the rate monotonic
scheduling algorithm. Following this methodology, we use the Worst Case Achievable Utilization as
the metric to be used in evaluating and comparing the schemes.

We say U, is an achievable utilization of scheme : if scheme x can guarantee all synchronous
message sets whose utilization is less than or equal to U.. The Worst Case Achievable Utilization
U; of a scheme x is the least upper bound of its achievable utilizations U.. That is, as long as
the utilization factor of a synchronous message set is not more than U., then the message set can

123

Name Formula of Hi W.C.A.U."

Full length Hi = Cj 0

Proportional H. = _ .(TTRT - 0)

E q u al p a rtitio n H i =_ _ _ _ _r_ __- 1-_

Normalized proportional Hi (TTRT - Tr) 1.
Local Hi = T-.

* W.C.A.ZY. is the &bbreviateai of 'Wonu CM. AckWhabke UsDliMiem'

a N vT/RTt.

Table 1: Summary of the Synchronous Capacity Allocation Schemes.

be guaranteed by scheme z. We consider one scheme to be better than another if its Worst Case
Achievable Utilization is higher.

The main advantages of using the Worst Case Achievable Utilization as the performance metric
are as follows:

e This metric evaluates the predictability of a hard real-time communication system. As long
as the utilization of a synchronous message set is within the bound specified by the metric, all
synchronous messages in the set will meet their deadlines.

"* This metric gives a measure of the stability of the system in the sense that the parameters of
synchronous messages can be freely changed without affecting the deadline guarantees, provided
that the total utilization of the message set is held within the limit.

" In practice, using this metric simplifies the network management considerably when configuring
the system, as it eliminates the problem of being encumbered with individual values of syn-
chronous and asynchronous message lengths, inter-arrival intervals, phase differences between 0
message arrivals, relative positions of the nodes, token position at initialization, etc. As long as
network managers can ensure that the total utilization of time-critical synchronous messages
is no more than the Worst Case Achievable Utilization of the protocol, they can be assured
that the message set will be transmitted with no deadlines being missed.

Evaluation Results 0

We analyzed five synchronous capacity allocation schemes based on their worst case achievable uti-
lizations. The results are summarized in Table 1.

Our analysis reveals that an improper allocation of the synchronous capacities (such as by the
full length scheme and the proportional scheme) could lead to a Worst Case Achievable Utilization
of 0%. That is, the deadline of some message could be missed even when the synchronous traffic is
extremely low. Both the normalized proportional allocation scheme and the local allocation scheme,
on the other hand, have a worst case achievable utilization of 0.33. If the utilization of a set of
synchronous message streams is less than 0.33 of the usable network capacity, then the synchronous
messages will be guaranteed by these allocation schemes. The remaining 0.67 of the usable network
capacity can be used for the transmission of asynchronous messages.

124

m m • _ml um .

4 Dealing with Link Faults

The results presented in the last section are based on the assumption that there is no network failure.
To provide deadline guarantees in the presence of a network fault, we also have to exploit the dual
ring architecture and the connection management mechanism proposed in the FDDI standard.

4.1 Dual Ring Architecture and Link Faults

The basic configuration of an FDDI network is a dual counter-rotating ring as shown in Figure 1. The
dual rings provide fault tolerant properties to FDDI networks, since the existence of a link fault can
be signalled on the opposing link. A link fault is defined as a fault that occurs on the links between
nodes resulting in a lack of communication across a single fiber. Examples include a single broken
fiber, a faulty optical receiver, and a faulty optical transriitter. Other faults (e.g., loss of power to a
node) may be treated similarly to a link fault. See [29] for a survey of FDDI fault classification and
management.

In the Station Management (SMT) of FDDI, there are bil-t-in mechanisms to detect and to
recover from a link fault. According to the FDDI standard, once a link fault is detected, a sequence
of ring recovery processes (i.e., the token reclaim process, beacon process, etc.) will be initiated. If
the fault is transient and hence recoverable, the ring may be functioning again after these processes.
If the faunI is permanent, two additional approaches are specified by the FDDI standard to recover
the network:

e Wrap-up: The fault domain is traced and the stations around the broken link perform a wrap-
up operation, i.e., two rings are effectively connected to each other at the stations immediately
adjacent to the fault. This re-establishes a single ring between all the nodes (see Figure 2).

e Global Hold: Another strategy is to prevent the wrap-up of the rings and hold the operational
ring, as it is, for continuing communication service. The messages from the faulty ring can be
transferred to the operational ring (see Figure 3).

4.2 Approaches

Although the connection management of FDDI guarantees network service before or after a single link
fault occurs, it does not support transmission of messages on the faulty ring during fault detection
and recovery. For hard real-time communication, this is inadequate because the fault detection
and recovery processes take several seconds or more to complete. Message deadlines in many hard
real-time applications are usually of a much smaller order of magnitude.

Furthermore, once a fault occurs on one ring, messages can only be transmitted on another ring.
If both rings are fully utilized before the fault occurs, it is impossible to transmit over a single ring the
messages that were previously on the two rings. Some of the messages will have to be dropped. We
assume that when a link fault occurs, the network changes into a link fault mode. In this mode, not
all the messages are to be transmitted. Only a subset of messages that are critical to the mission will
be transmitted and their deadlines have to be guaranteed at any time, including during the period of
fault detection and recovery. We assume that the capacity of one ring is sufficient to transmit these
mission critical messages. The objective is to develop network run-time control schemes that will be
able to guarantee the deadlines of critical messages through the entire mission even in the presence
of a link fault.

The following approaches have been proposed to deal with this problem:

"* Full Duplication Method. Duplicate the transmission of critical messages on both rings so
that when one ring is unavailable, the deadlines of messages are still guaranteed because they
are also transmitted on the other ring. This solution is the simplest but it suffers by wasting
bandwidth during times when there is no fault.

"* Dynamic Reallocation Method. With this approach, once a fault is detected, critical mes-
sages from the faulty ring are reallocated to another ring that is still operating. Although the

125

Fig 1: Dual Ring Architecture of FDDI

Fig 2: Fault Recovery after Wrapped Up

Fig 3: Fault Recovery mith the Hold Policy

126

bandwidth is fully utilized when there is no fault in the network, the implementation of this ap-
proach requires a detailed analysis of timing factors in fault detection and mode change. A time
efficient message reallocation scheme and mode change protocol are also needed. Furthermore,
this solution cannot be applied to those applications where the deadlines of critical messages
would be too small to tolerate the overhead of fault detection and dynamic reallocation.

e Integrated Method. An alternative is to integrate the full duplication method and the dy-
namic reallocation method. The transmission of critical messages with very small deadlines is
duplicated on both rings. A dynamic reallocation will be performed for other critical messages
when a link fault occurs on one ring. This method should utilize the network better than the
full duplication method while overcoming the shortcomings of dynamic reallocation.

We are currently developing techniques for the implementation of the above three approaches,
and to evaluate and compare the performance of these approaches. The performance metrics we are
interested in include the effectiveness of network utilization in both normal and faulty situations, the
run-time overheads, and the domain of applicable applications.

5 Summary

We address issues pertaining to deadline guarantees in a degraded FDDI network. We aimed at
providing deadline guarantees to a set of mission critical messages throughout the entire mission,
even in the presence of a fault. This is particularly important in practice because some critical
applications do need non-interrupted real-time service.

Our approach is (upward) compatible with the proposed standard. Hence, the results obtained
from our work will be immediately applicable to the design and analysis of distributed hard real-time
systems where an FDDI network is used.

We analyze the system by deriving its worst case utilization bound. This metric is particularly
important because it indicates the safety, margin of the system and provides a measure of system
stability. All previous work regarding this measure is related to the rate monotonic scheduling
algorithm. Our work is the very first which derives the worst case utilization bound for a schedul-
ing environment where global priority arbitration is not supported and hence the rate monotonic
algorithm cannot be used.

References
[1] ANSI/IEEE Standard 802.4 - 1990 Token passing bus access method and physical layer speci-

fications, The Institute of Electrical and Electronic Engineers, Inc., New York, 1990.
[2] ANSI Standard X3.139-1987, FDDI Token ring media access control, Feb. 28. 1986.
[3] ANSI Standard X3T9/90. FDDI Token ring station management, May 1990.
[4] B. Chen, A. Agrawal, and W .Zhao, "Optimal Synchronous Capacity Allocation for Hard Real-

Time Communications with the Timed Token Protocol", Proc. IEEE Real-Time Systems Sym-
posium, Dec. 1992.

[5] G. Agrawal, B. Chen, and W. Zhao, "Local synchronous capacity allocation schemes for guaran-
teeing message deadlines with timed token medium access control protocol", Proc. IEEE Conf.
Computer Communications, INFOCOM '93, March 1993.

[6] G. Agrawal, B. Chen, W. Zhao, and S. Davari, "Guaranteeing synchronous message deadlines
in high speed token ring networks with timed token protocol", Pno. of IEEE International
Conference on Distributed Computing Systems, June 1992.

[7] L. Bergman, "Optical protocols for advanced spacecraft networks," Proceedings of the space
;tation evolution symposium, Vol. 1, part 2, League city, Texas, Aug. 6-8, 1991.

[8] E. Chevers, "Advanced DMS architectures," Proceedings of Space Station Evolution symposium,
Vol. 1, part 2, League city, Texas, Aug. 6-8, 1991.

r91 M. D. Cohn, "A network architecture for advanced aircraft," Proc. IEEE Conf. on Local Com-
puter Networks, pp. 358-364, Minneapolis MN, Oct. 10-12, 1989.

127

[10] S. Davari and W. Zhao, "RMS aids real-time scheduling", RICIS Review, Vol. 3, No. 1, 1991.

[11] D. T. Green and D. T. Marlow, "SAFENET - A LAN for navy mission critical systems," Proc.
14th Cone on Local Computer Networks, Minneapolis, MN, pp. 340-346, Oct. 1989.

[12] R. M. Grow, "A timed token protocol for local area networks", Proc. Electro/82, Token Access
Protocols, May 1982.

[131 R. M. Grow, "FDDI follow-on status," Proc. IEEE Cone on Local Computer Networks, pp.
45-48, Minneapolis MN, Sept. 30 - Oct. 3, 1990.

[14] V. Iyer and S. P. Joshi, "New standards for local networks push upper limits for lightwave data,"
Data communications., pp. 127-138, July 1984.

[15] V. Iyer and S. P. Joshi, "FDDI's 100 M-bps protocol improves on 802.5 Spec's 4-M-bps limit,"
Electrical Design News . pp. 151-160, May 2, 1985.

[16] R. Jain, " Error characteristics of fiber distributed data interface (FDDI)", IEEE Trans. on
Commun., vol. 38, No. 8, Aug. 1990.

[17] RI. Jain, "Performance analysis of FDDI token ring networks: effect of parameters and guidelines
for setting TTRT," IEEE LTS, pp. 16-22, May 1991.

[181 M. J. Johnson, "Proof that timing requirements of the FDDI token ring protocols are satisfied",
IEEE Trans. Commun. vol. COM-35. no. 6, pp. 620-625, June 1987.

[19] L. Kleinrock. Distributed systems. Communications on the ACM, 28(11), November 1985.

[20] Rt. J. Kochanski and J. L. Paige, "SAFENET - The standard and its application," IEEE LCS,
Vol. 2, No. 1., pp. 46-51, Feb. 1991

[21] J. F. Kurose, M. Schwartz, and T. Yemini, "Controlling window protocols for time-constrained
communication in a multiple access environment," Proc. IEEE Int. Data Communication Symp.
1983.

[221 C. C. Lim, L. Yao, and W. Zhao, "A comparative study of three token ring protocols for real-
time communications", IEEE Cone on Distributed Computing Systems, pp. 308-317, Arlington,
Texas, May 1991.

[23] C. L. Liu and J. W. Layland, "Scheduling algorithms for multiprogramming in a hard real time
environment," J. ACM, Vol. 20, no. 1, 1973, pp. 46-61.

[24] N. Malcolm and W. Zhao, "Version selection schemes for hard real-timE communications.", Proc.
IEEE Real-time Systems Symposium, San Antonio, TX, Dec., 1991.

[25] J. Mccool, " FDDI - getting to the inside of the ring", Data Commun., pp. 185-192, March
1988.

[26] MIL-HDBK-818-1, "Survivable adaptable fiber optic embedded network", Oct. 1992.

[27] J. Ng and J. Liu, "Performance of local area network protocols for hard real-time applications",
IEEE Conf. on Distributed Computing Systems, pp. 318-326, Arlington, Texas, May 1991.

[28] K. B. Ocheltree and Rt. M. Montalvo, "FDDI ring management," Proc. IEEE Cone on Local
Computer Networks, pp. 18-23, Minneapolis MN, Oct. 10-12, 1989.

[29] K. B. Ocheltree, "Using redundancy in FDDI networks," Proc. IEEE Conf. on Local Computer
Networks, pp. 261-267, Minneapolis MN, Sept. 30 - Oct. 3, 1990.

[30] Lt. J. L. Paige, "SAFENET - A navy approach to computer networking," Proc. IEEE Conf. on
Local Computer Networks, pp. 268-273, Minneapolis MN, Sept. 30 - Oct. 3, 1990.

[31] J. Pang and F. A. Tobagi, "Throughput analysis of a timer controlled token passing protocol
under heavy load", IEEE Trans. on Communications, Vol. 37, No. 7, pp. 694-702, July 1989.

[32] K. Ramamritham, J. Stankovic, and W. Zhao. Meta-level control in distributed real-time
sYstems. In Proceedings of IEEE Seventh International Conference on Distributed Computing
Systems, pages 10 - 17, September 1987.

[33] K. Ramamritham, J. Stankovic, and W. Zhao. Distributed scheduling of tasks with deadlines
and resource requirements. IEEE Transactions on Computers, 38(8), August 1989.

[34] F. E. Ross, "FDDI-A tutorial," IEEE Commun. Mag., vol. 24, no. 5, pp. 10-17, 1986.

[35] F. E. Ross, " Rings are round for good", IEEE Network Mag., J-z. 1987.

128

I

[36] F. E. Ross, "An overview of FDDI: The fiber distributed data interface," IEEE Jouraal on Sel.
Areas in Comm., pp.1043-1051, Vol. 7, Sept. 1989.

_ [37] SAE, Aerospace Systems Division, Committee AS-2, "Linear token-passing multiple data bus,"
AS4074.1, Version 4.0, Jan. 25, 1988.

[38] SAE, Aerospace Systems Division, Committee AS-2, "High speed ring bus (HSRB)," AS4074.2,
Jan. 27, 1988.

[39] K. C. Sevcik and M. J. Johnson, "Cycle time properties of the FDDI token ring protocol," IEEE
trans. Software Eng., Vol. SE-13, No. 3, pp. 376-385, 1987

[40] L. Sha and J. B. Goodenough, "Real-time scheduling theory and Ada*," IEEE Computer, April
1990., pp. 53-62.

[41] K. G. Shin and C. Hou, "Analytic evaluation of contention protocols used for real-time systems,"
Proc. IEEE Real-Time Systems Symrp., Dec 1990.

[42] K. G. Shin and Q. Zheng. Mixed time-constrained and non-time-constrained communications
in local area networks. To appear in IEEE Transactions oa Communications.

[43] R. Southard, "Fiber optics: A winning technology for LANs," Electronics, pp. 111-114, Feb.
1988.

[44] J. Stankovic. A perspective on distributed computer systems. IEEE Transactions on Computers,
C-33(12), December 1984.

[45] J. K. Strosnider, J. Lehoczky and L. Sha. "Advanced real-time scheduling using the IEEE 802.5
token ring," Proc. IEEE Real-Time Systems Symp., pp. 42-52, Dec 1988.

[46] R. W. Uhlhorn, "The fiber-optic high-speed data bus for a nev. generation of military aircraft,"
IEEE LCS, Vol. 2, No. 1, pp. 36-45, Feb. 1991.

[47] J. N. Ulm, "A timed token ring local area network and it's performance characteristics," Proc.
Conf. Local Computer Networks, Feb. 1982, pp. 50-56.

[48] A. M. van Tilborg and G. M. Koob. Foundations of Real-Time Computing: Formal Specifications
and Methods. Kluwer Adademic Publishers, 1991.

[49] A. M. van Tilborg and G. M. Koob. Foundations of Real-Time Computing: Scheduling and
Resource Management. Kluwer Academic Publishers, 1991.

[50] A. C. Weaver and R. Simoncic, "Communications for the NASA space station," Proc. IEEE
Conf. on Local Computer Networks, pp. 333-346, Minneapolis MN, Oct. 10-12, 1989.

[51] L. Yao and W. Zhao, "Performance of an extended IEEE 802.5 protocol in hard real-time
systems.", Proc. IEEE Conf. Computer Communications, INFOCOM '91, April 1991.

[52] S. Yau. Special Issue on Distributed Computer Systemsi. In IEEE Transactions on Computers,
Vol. 38, 1989.

[53] W. Zhao, editor. Special Issue on Real- Time Operating Systems, A CM Operating System Review,
volume 23. ACM Press, 1989.

[54] W. Zhao and K. Ramamritham, "Virtual time CSMA protocols for hard real-time communica-
tions", IEEE Transactions on Software Engineering, SE-13(8):938-952, Aug 1987.

[55] W. Zhao, K. Ramamritham, and J. Stankovic. Scheduling tasks with resource requirements in
hard real-time systems. IEEE Transactions on Software Engineering, SE-13(5):564-577, May
1987.

[56] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive scheduling under time and resource
constraints. IEEE Transactions on Computers, C-36(8):949 - 960, August 1987.

[57] W. Zhao, J. Stankovic, and K. Ramamritham. A window protocol for transmission of time
constrained messages. IEEE Transactions on Computers, C-39(9):1186 - 1203, September 1990.

129

List of Transparency Sets from Workshop

(Not all transparency sets were made available by workshop participants)

1. Agrawala, Ashok, Overview of Maruti .. 134

2. Bayne, Jay S., A New System Model for Industrial Plant

C o n tro l ... 16 7

3. Burns, Alan, Key Issues, Computational Model 189

4. Chevers, Ed, Future NASA Projects .. 213

5. Gabrielian, Armen, The Role of Formal Methods in the Design

of Complex Real-Time Systems .. 233

6. Gerber, Richard, Unifying Real-Time Design and Implementation 249

7. Goforth, Andy, Ada Real-Time Methodology Assessment:

Lessons Learned at NASA Ames Research Center 271

8. Howes, Norman, Real-Time Design Methods in the Current

L iterature ... 2 93

9. Jensen, E. Douglas, An Introduction to Scalable Real-Time

Operating System Technology .. 319

10. Jensen, E. Douglas, Asynchronous Decentralized Real-Time

C om p uters .. 33 9

11. Liu, Jane W. S., Distributed and Parallel Environments 359

12. Locke, C. Douglass, Validation and Verification of Real-Time

System s D evelopm ents ... 393

13. Nielsen, Kjell, Large, Distributed, Parallel Architecture Real-

Tim e System s .. 405

14. Sha, Lui, Dependable Real-Time Software .. 439

15. Wood, Jonathan D., Options for Validating Real-Time Systems 461

16. Zhao, Wei, Predictability and Scalability of Real-Time Scheduling 469

131

Transparencies from Workshop Presentations

(Not all transparencies were made available by workshop participants)

133

4C

Q)

C4

4A

1.3

c• S

00

1344.

II

u

135

00

t- C
cra

-/ U 0

00

-E

All

C)136

S

0 I..
0

bC

0

S..

I-.
0

S..

0

*

0

S

"4

0

S

*

C., S..
- 0
- 0.
- 0

* L 0
- U

0C-,
U

S..

0.*
0

I 137

0

..........

I., ~ ~ ~

* :i:
: :::

1381

bLO 0

00

$00

0 PM0

.00

tO
bjO 5-)

Z 0)

0 $0

Irv

a) -

139 -

CZC

bO0

00

ce Cd

bIio
V0

~- I:$

:7' 0

04

Ik

pD5-

S_.

m m4

00

141 C

be

00 .b

c~U)

S-.4. 0

Cd 0
y0

Cd 0
A:4)

0~0

U2 C.) _ _ _

C) 142

1

I
I-
0

C
bC
C

0

I
0

£4

4.-
0

4'
U
8.

0

0 =

C C.)I -4

0
o

b.O I

0
S 0� a C.'U2

V
�:I) 0 -

0
V -

4'
C"

0
�I) cj.�

V C)
-� -

C..) SCi2 -�

Cl) -�

Cl',5 C.)
-- 4% & __

'� 0 __ 4'

a) a) 02
C.) �4\ 4'

'.4

'-" '--' *H *H 0�e -d a) a) 0a-., U U
a) C) a) a) 0

era t. U

S '-I 0
C\1

9 '.40
4'

p
2
C

S - U

143

0

C .� 0
0

0
.�- .a
0

S..

I...

C

0
(A"'0 (**) I S..

-.4EE�

.i;
Uo

0
b.C 0

U

* -
0

C,'
(0-

I' -
Uo

0

b.C a I

up, 0 C.)
C,)
QI) 00 '-.1.

0 * ao .4.1

�II � w
U
0
p4 S I-

5-4 Pd ,.�I _________________ 04

0 0 0o 0
Up.' a

-. % -'
'-�1 (.N U

'- '-

* II

C)

a
S
0

0

144 0

0p

4-) 4) 4-3 Q) r

4-0- -

4-) 4-' 4-' a

bo

4-3 - -

S S- -I CNI
tI) ___ a)

0 0 4)

00
~%~' *%n

14b~4 -~ 9

C..

L)

CdC

0~-b-

C.) Cd
Cf))

146

CI

9-
...

V.)L

IN

0w

C,)

op'p

w w uw

ra

147

'-4D

CdC

clel
0 0

C-)

oc

C)l

cjcn

148-
S• • •

ce -'- • •

o 0 C)

148~

-4-

r.")

eq Cf)VJ

oJ
QE

0~

-4-D

CM m

00

04 C4
w IL w

_ _ I I

[1 * 149

.0

........ 1

150

S
0d

cuc

o t

CL.a

4-2 C5

La.

S
0i

151

0 0

C6.

W))

CM 0

I--~C Cc a
-~ F-<

-~ E

152~

*A
bo0

U

0

4-D-

00

00

goa

453* 0o
w WC

C153

6d0

*..a........

a a* *

P

a * a *PO N

a * a * 4 0

................a ft

.................

....

I . . . aJ!
* a .~ :w

a a)

* a a'~ : : : ~ *.* ~*. a 0

* ~ * a154

Cq
0

bo

u

"- • ,,! •. I_...-,

i:i

Lll

S.~ 0t...

* *40

c ci

155

00

ciC

00
LW.

.1.

156.

0

CdC

z0

CIC

-4 0.

A I

15

0

C).

4-'-

C12 C.)

rn~
*d -)

0) EE
F-4~ C

0c

C.6d

158t/

L.i

VI-

00

v I.

-6-

"0~0 __ Al V

159

ca C

1= 0

Cc0
CD

4-D-

cu Ce

~~0
ce-

CD)

Cu o

Cd -

jj CO

160

0

L)

-4- 01
0-4IdC
C) C3.

U) C.)
0~ 0 C)

-d 0) Ci 6
(n bD- C)

C) r.

4-D~

C) - 0 ~

- 4 -~ '.~l.

'-4 Ci b 161

S.~

0

04
a-

000

"-of-

0*

1621

U)U

00

CC

0 Q 0

Hw

II

I 0
c Aa

__ _ _ _ _ __ _ i1~

163

r CC

XU

-:,C

(to

....... C-4.

....

n. C.

U),

1644

0 E

00

* V.

+-D cm

a -;.2
CLw

i~i m

h..h

..
..
.- 0

ccN

F- I

0 I-'.-165

October 5, 199Z

A New System Model for Industrial Plant Control

* Jay S. Bayne
Bailey Corntrols Company

Elsag Bailey Process Automation
29801 Euclid Avenue, Wickliffe, OH 44092

21 6.585.5501

Abstract

The essential thesis of this paper is that the next generation of industrial-
grade process plant automation and control systems requires a new system
model. Key features of this new model include enhanced real-time control

* semantics to support the interactions of distributed fine- and coarse-grained
objects. The interaction model is based on adaptive scheduling policies,
dynamically adjustable system configurations, and new classes of abstract
real-time data types. The emergence of distributed computing machinery to
host objects based on these semantics will allow the creation of mission-
critical, vertically integrated industrial applications whose spans of control

0 cover a much wider operating domain of the process plant. The new system
model will provide the basis for a plant control system (PCS) environment
that can subsume the duties of today's more limited and proprietary
regulatory distributed control systems (DCS) while providing the platform
for a new generation of advanced plant controls.

Key Words: Continuous process plant control; distributed control system
(DCS); plant control system (PCS); objects; threads; adaptive
scheduling; dynamic configuration; real-time control.

1. Introduction

The domain of commercial industrial process control is served today by automation systems
that have been optimized for linear, deterministic, sampled-data regulatory control
problems. In the main, these systems utilize distributed microprocessor-based elements
interconnected by various proprietary communications structures to implement classical
analog regulatory loop control policies and mechanisms. For a given plant control
application (e.g., industrial steam production) control policies are typically expressed by
engineers in the semantics of feed forward and feedback control elements (e.g., the
proportional integrating and differentiating, or PID, controller). These elements are
driven by discrete-time, quantized measurements comprising small vectors of integer and
real number values (e.g., pressure, temperature, pH, flow rate). Output from the control
logic elements effect process state through actuation of final control devices (e.g., valve
positioners, motor controls and electrical switch gear). This input-control-output relation
defines a "control loop" and is the architectural basis for the current generation of
instrumentation and control products.

More advanced regulatory control systems add to the basic mechanisms facilities for multi-
loop control policies predicated on process identification, optimal estimators, optimal
controllers, and high-fidelity process simulations. Some even support embedded advanced
control primitives such as Smith Predictors, multi-variable and adaptive (e.g., self-
tuning) controllers, and batch process controllers. These more advanced features support
the creation of control policies appropriate for the management of more complex processes

NATO Advance Study Institute on Real-Time Control Page 1

167

October 5, 1992

whose character may be less deterministic, stochastically driven, not directly observable,
or only partially controllable. Services provided by these advanced functions generally
define the base of what is considered the supervisory control domain.

Contemporary regulatory control systems have grown in both design and application from
the bottom up, having been derived from earlier electro-mechanical, pneumatic, and analog
control precursors dating back to the industrial revolution. They are typically specified and
implemented by conservative operating plant personnel whose primary interests are the
production of the product(s) the plant exists to manufacture. The automation systems have
historically been seen as stand-alone systems whose inputs and outputs are distinct from
those of other plant processes.

For example, it is not uncommon to find in a pulp and paper mill [Smoot89] three different
control systems, one responsible for the power house (electricity and steam processes), one
controlling the pulp mill (fiber and effluent process), and one controlling each paper
machine (paper production processes) in the mill. These various control systems were
probably purchased at different times, from different vendors, at different points in the
evolution of distributed control technology, by different plant management personnel, for
different economic reasons, and without the benefit of an overall plant integration and
automation policy. Rationalization, integration, training, maintenance, and inter-operation
are generally only afterthoughts, and today represent significant elements in the total
operating cost equation for the plant.

At the same time individual control systems were being implemented at the operating plant
level, new levels of automation addressing a different class of problems (with completely
different semantics) were being applied to enterprise business systems. Business systems
are typically not viewed as control systems per se. They are generally sponsored by
corporate finance and MIS organizations whose problem domains are semantically different
from that of plant operations, and whose policies and mechanisms have grown from a
distinctly unique tradition.

During the period from 1960 to 1980, while much of today's plant and business automation
was being installed, a great deal of work was done to bring these two disciplines together.
Most of this work was academic with its foundation based on principles of operations
research, econometrics, cybernetics, and the modeling and simulation of large-scale
dynamic systems. During the last two decades, computer science has given us a rich set of
domain neutral semantics within which to express control and automation problems,
solutions, policies, and mechanisms that are applicable to the traditional regulatory and
business domains. During the same period global commercial pressures have made 0
production efficiencies, product quality, and environmental and resource management issues
critically important business policy and capital investment drivers.

These factors have each led to increasingly richer requirements to interconnect plant
process control systems with operational business systems to facilitate such applications as
optimal plant production scheduling, raw material resource planning, and compliance to 0
regulatory agency tracking and reporting requirements. For the last decade these
applications requirements have led increasingly to connectivity and inter-operability
requirements that have helped create an entire industry based on the professional practice
of systems integration. They have also given impetus to an entire spectrum of industrial,
national, and international open systems standards movements.

0
It is our thesis that during the next decade world-wide commercial forces will justify the
fusion of business and regulatory control policies. This will result in the rationalization of
intra- and inter-plant operating policies, resulting in the establishment of consistent

NATO Advance Study Institute on Real-Time Control Page 2

168

October 5, 1992

operating and control semantics. This unified set of operating and control semantics will
foster reusable applications, encourage integration, and lower the overall installed and
operating costs per automation function. The science of distributed information systems is
sufficiently rich today (with a few important exceptions) to provide the essential computing
and communicatio.% fabric on which semansica!ly conrsistent mechanisms can execute. We
will explore this issue in the following pages.

2. Contemporary Industrial Process Controls

Contemporary industrial digital control systems (DCS's) provide direct digital data
acquisition and control of industrial continuous, batch and discrete manufacturing processes.
For a number of logical and historical reasons, these control systems fall within an
automation hierarchy. The figure below depicts this logical hierarchy of the automation
platform. The levels imply the span of influence of the control applications that populate
physical components that comprise the total plant automation system. The five level
hierarchy combines control elements that span field instrumentation elements at the base,
to inter-plant control elements at the top.

next generation L4
industnal-grade

distnbured
plant control systems U

(PCS) I

conterrrary L2 L2 L2 L2 L2 L2 12 L2 L2industri grade
ditbve r-7- 1 H Iregulatory control ', l L1 L1 L Li Li Li Li Li Li-[_-4 -4 4- _1

LO0 O LO LO LO LO LOL0 LO LOLO LO Lo

Level 0 LO defines a domain that encapsulates applications (e.g., transducer management)
responsible for field process measurement, actuation or analysis. LO objects are
end-systems on field communications links responsible for either input to, or
output from, a L1 regulatory or cell control. Therefore, LO elements are
generally grouped and associated with specific Level 1 control policies.

Level 1 Li objects implement policies governing data acquisition, filtering, and
regulatory or sequence control functions. Li objects are responsible for basic
manufacturing cell-level (inter-transducer) direct digital control,
implementing the automation responsible for primary physical process
supervision and safety-related process management. Li has its roots in electro-

0 mechanical, pneumatic and analog controls which provides the semantic
framework for control policies and mechanisms found at this level. This level
exhibits the most stringent real-time and fault-tolerant requirements within
the hierarchy.

Level 2 L2 defines the supervisory or area control domain responsible for basic area
(inter-cell) production control. L2 is generally associated with plant control
rooms where many regulatory loops are consolidated into higher level process
control. L2 objects provided mechanisms which implement policies governing
operator interfaces, process data archives, trend analysis, alarm management,

0!

NATO Advance Study Institute on Real-Time Control Page 3

169

October 5. 199Z

diagnostics, plant area start-up and shutdown, and Li configuration and set-
point control. This level generally defines that lowest level for horizontal
(wide-span) control policies.

Level 3 L3 represents the intra-plant (inter-area) control domain where policies
governing plantwide coordination, cooperation and control are implemented. 13
objects provide mechanisms that govern plant production scheduling, energy and
raw material utilization, inventory and work-in-process, product quality, and
maintenance management policies. This level provides the intra-plant control
room domain, where plant management personnel can interact with the operating
conditions of the overall plant. This is a site-specific wide-span control domain.

Level 4 L4 is the inter-plant (intra-enterprise) control domain providing objects
responsible for enforcing global product production coordination, supervision
and control. This domain is relevant to enterprises operating multiple plants
with common or shared production facilities. For example, two chemical plants
responsible for manufacturing a specific polymer may be coordinated to meet
volume commitments under the uncertainties of maintenance, labor,
transportation, and raw material availability.

From an implementation perspective, existing DCS designs are focused on two principle
areas: I/0 front-ends and Li controllers. This has focused attention on the interconnection
networks running between these two elements, and competitive systems today have taken
different approaches to implementing their respective control networks (aka, 'data
highways.") The designs are optimized for low cost per I/O point (analog and digital),
1 Oms control loop response times, high availability, and low MTTR.

User interfaces are today, for the most part, based on proprietary graphical presentation
systems. Many are hosted on general purpose workstation-class machines from HP, DEC,
and Sun. The principle application engineering tools used are graphical control block
programming environments that allow the process control engineer to cut-and-paste
control software objects (e.g., a function generator or PID block) into a design. These
graphical descriptions, each of which typically define a loop control policy, are then
compiled into executable "segments" that are loaded into one or more of the LI controllers.

Li controllers are specially designed single board computers that are optimized for
reliability, environmental hardness, n:1 or 1:1 redundancy, high-speed communications
with peer Li machines, hot insertion into their backplanes, and multiplexed
communications with the LO input/output subsystems. Li and LO devices generally operate
in a master-slave relation, with a single Li master responsible for up to 32 LO I/O slaves.

For the purposes of this paper, the salient feature of L1 (and some LO) elements is the
manner in which loop segments (and complex measurement, actuation and analysis) code is
scheduled and executed in "real-time." Contemporary DCS implementations have taken a
very conservative approach, based on best practices of the late 1970's and early 1980's
when these systems were architected. There were a number of silicon-based executives
available such as VRTX, MTOS, and pSOS that provided the basic multi-tasking kernel
primitives required for interrupt-driven, priority-based scheduling. These kernels were
optimized (for the time) for low task switching overhead, priority-based queuing and task
dispatching, and primitive interprocess signaling. To simplify the designs, and to keep
context-switch latencies to a minimum, DCS vendors resorted to the simplest of all task
scheduling policies -- fixed priority within fixed time cycles.

NATO Advance Study Institute on Real-Time Control Page 4

170

October 5, 1992

The various loop control mechanisms, as expressed in sequences of compiled and linked
control block segments, are deposited by a systems engineering development tool, typically
hosted on a PC- or workstation-class machine into the address spaces of Li machines. The
loading policy is based on a priori knowledge of typical execution profiles of various control
blocks. The configuration tools estimate the load a given loop control policy will likely place
on the Li machine, its periodic execution requirements, and its estimated duty cycle, or
completion time. On the basis of on these factors (and a few heuristics-based magic
numbers thrown in for good measure) a given Li machine is assigned its task set.

Task sets and their interaction profiles are rarely understood well enough at design time to
guarantee their correct temporal behavior. To compensate for this, Li machines are
typically under utilized in terms of processor cycles. Furthermore, a great deal of
verification testing and system tuning is performed during the factory acceptance and on-
site system commissioning phases of a project. This multi-step configuration process is
required for establishing confidence that the system logic and its implementation are, in
some fashion, correct. This process is not only time consuming and cumbersome, but
represents a significant cost, both before commissioning and afterwards during
maintenance, upgrades, and redesign caused by process changes within the plant.

This effort at scheduling Li task sets is at the core of the DCS configuration problem. It does
*0 not address the scheduling of L2 or L3 or L4 tasks, nor does it manage the interdependencies

among tasks at the various levels in the hierarchy. Therefore, it can be said that although
LO and Li are truly "hard" real-time, as defined by [Cheng88] and others, L2-L4 are only
"soft" real-time. Therefore, applications that are vertical in nature (i.e., engage the
resources of LO-L4 machines on behalf of some computation) are only soft real-time, at
best. We require the next generation of industrial control systems to be "vertically hard"
real-time, as opposed to today's machines that are "horizontally hard,* and only so at the
lowest levels.

Because current DCS configurations are optimized for (and typically procured and applied
to) Li and L2 applications, their resources are highly utilized at LO and Li, but often under
utilized at L2. There are a number of reasons for this disparity. They are primarily
historical, but certainly the proprietary nature of contemporary DCS implementations
makes it difficult and expensive to realize integrated vertical solutions to advanced plant
control problems. This situation has lead to the development of "middleware" companies
such as Oil Systems and Setpoint that have successfully developed and deployed a limited
number of control-oriented applications on standard general purpose computers that bridge
the gap between "business systems" at the top of the hierarchy and the "control systems"
(DCS's and PLC's) at the bottom. These middleware services tend to support market- and
process-specific applications requiring real-time archival storage, analysis, and
presentation functions.

The historical reasons for this control domain isolation and under-utilization are rooted in
the business practices of both vendors and end-users of regu!atory control systems. It is
difficult for vendors to think outside their historical context and base market applications.
For example, Bailey is rooted in the electric utility and industrial steam markets,
Honeywell is rooted in the petroleum refining market, and Allen-Bradley is rooted in the
electrical switch gear commodity market. Furthermore, the problems of control at Li are
complex, and industry-specific process knowledge is an asset that must be developed and
nurtured over time.

On the end-user side of the equation, there are a number of impediments to developing
vertically integrated control policies and mechanisms. First, L3 and L4 are not well
understood as control domains. They are still today referred to in MIS, finance, or

NATO Advance Study Institute on Real-Time Control Page 5

171

October 5, 1992

manufacturing terms. Practitioners at these levels do not think in terms of real-time
control. Their semantic frames of reference are rooted in transaction processing, database
management, COBOL, MRP, and Lotus 123. To make matters worse, sponsors of L3 and L4
automation initiatives generally do not define their problem domain in terms relevant to
process plant operations personnel.

The semantic gap between vendor and user, and among user communities, will likely persist
for some time. It is a condition of current business practices and tradition. The next
generation of plant control systems need not be so constrained. There are cogent reasons to
believe that providing control platforms and associated services designed to support the
construction of vertically integrated applications will be a primary driver for resolving
(dissolving) this disparity.

2.1 Contemporary Platforms

Although there are a number of important distinctions among the competing distributed
control systems in the market today, they are all much more similar than they are different.
One set of metrics relates to the size and complexity of the control tasks the systems are
commissioned to manage. Typical control system projects can be measured in terms of I/O
counts, control loops, and system database elements (aka, "tags.")

I - anailog-inputs + #dlgrtalinputs

-

L

+ dL

cotrJoops

L- - 0+0)/Z

indstral ~o "I '. tag. C - ftprnTary-.calcuibted-vakas
sconter d eS - #secondary-calculiated_vakies

- trends + variables

T - #tags

-I + 0 + L + C + S

0 - Manalog.oumuts + #dgftaLoutput,- 0.÷ Od

The figure above provides a simplified model of a node in a contemporary process control
system. The graphic depicts a four loop controller and its associated local database. A
"control loop" is defined as an input/output pair wrapped around some control algorithm.
In many supervisory systems, the primary function is data acquisition (SCADA) for which
this I/O pair-per-loop rule is violated. Such systems may have 10-20 inputs for a single
output. Inputs comprise analog and digital measurements, while outputs are either analog or
digital control signals. During the course of computing (estimates of) process state changes
and requisite control policies, primary and secondary derived quantities and intermediate
calculations are made. All of these elements combine to define the contents of the "tag
database" associated with a given controller.

A large system configuration might, for example, contain a distributed database of 30,000
tags derived from 10,000 L0 I/0 points, of which 1000 pairs are associated with 1000 Li
regulatory control loops. There may be another 7000 independent LO process variable

NATO Advance Study Institute on Real-Time Control Page 6

172

October 5, 1992

measurements that provide input to 1 00 L2 supervisory controls responsible for producing
900 outputs.

From these points and Li loops and L2 controls are derived the 12,000 primary process
meta-variables (e.g., averages, process state estimates, etc.) and another 8,000 secondary
metrics (e.g., trends, correlations, etc.) The 1000 Li loops might be implemented in 50
controllers (hardened, single-board computers) hosting an average of 20 control loops
each, some of which are dual-redundant for safety reasons. The 100 L2 controls may be
implemented in 10 L2 controllers, some of which are redundant. These 60+ controllers
would be connected to their respective input-output channels through collocated I/O
subsystems. Each would maintain the real-time status of their tags. These tags would be
available throughout the control system by virtue of the system's distributed database and
communications services.

Systems of this size are rare today (<1 0% of the total), but occur frequently enough that
system designs must take them into account. Many of today's DCS vendors sell systems that
cannot be easily scaled either up to this size, or if designed for this size, cannot be scaled
down to small economically viable systems. Scalability is a critical design requirement for
the next generation of commercial control systems.

The figure below depicts a platform configuration that is typical of today's plant automation
systems. LO field devices are connected through some form of a field bus to Li local or
remote I/O processors or integrated controllers. Li devices are interconnected via control
network segments to L2 area controllers that are, in turn, connected through a backbone
network to general purpose L3 computing devices (e.g., via Ethernet-based LANs). These L3
devices are then used to interconnect to enterprise-wide business systems (e.g., through
IBM SNA-based networks).

This general configuration associates control domains with communications sub networks,
since the physical geometry of the plant most often defines both the physical and logical
partitioning of the process control problem. In the next generation of control systems there
are clear cost and performance incentive~s to collapse the three physical networks (Level 1-
3 in the figure above) into a single high-performance structure. There will, however,
remain practical reasons to partition the control problem into a logical hierarchy that is
appropriately mapped onto the flattened physical structure.

The figure shows a number of different processing nodes representing "control domain
hosts," or servers. In this simplified example, control servers (CS) interact with
transducers directly interfaced to plant processes. Applications servers (AS) interact with
the control services to produce derived process state information. Display servers (DS)
provide the domain specific operator interfaces which can be shared across the system at
end-user devices (in the sense of X-windows). Bridge servers (BS) isolate control domains
and route, through flow control protocols, high priority safety-related process
synchronization messages. Gateway servers (GS) provide for interconnecting subsystems
into heterogeneous intemetworks.

As logical as this picture is, contemporary systems have not solved in a unified manner a
number of key problems, including issues related to Li -L2-L3 interoperation, CS-AS
cooperation at a given level or across levels, GS functionality as it pertains to access control
and accounting in an internetwork, or the style and function of shared displays (i.e., the
"single window" operator console). These problems are difficult (if not intractable) given
the heterogeneous, loosely coupled, and proprietary nature of current control system
designs. The situation is exacerbated by the conservative policies governing control of

NATO Advance Study Institute on Real-Time Control Page 7

173

October 5, 1992

w

, ._.._ . _

'L 3©0

processes with safety-related side effects and the nature of capital project justification and
implementation cycles within end-user markets.

Even without a "unification principle,° the process industries have succeeded in building
systems in an ad hoc fashion out of multi-vendor components with reliance on in-house and
third-party systems integration services. The predominant trend is to utilize combinations
of PC-, workstation-, and VAX-class machines interconnected by LAN's and LAN-servers
for the L3 and L4 application platforms. These are in turn attached through non-standard
means to more homogeneous Li1-L2. DCS or PLC environments. These configurations tend to
be relatively inexpensive from a hardware view point. However, the less tangible costs
associated with integration services, licensed software, system maintenance and
development, documentation, and training tend to be very high when compared with more
homogeneous solutions. The goal of next generation plant control systems is to provide
greater benefits and lower total costs through rationalizing these ad hoc control platforms.

3. Next Generation Industrial Plant Controls

The next generation of industrial plant control systems will be architected to provide new
capabilities while at the same time addressing the deficiencies of the current generation
DCS+.LAN products. New capabilities will likely include integrated vertical applications,
wider (aka, plantwide) spans of control, greater process fidelity, improved availability of
the whole ensemble, lower total costs per control function, and backward compatibility to0
legacy systems.

i0
NATO Advance Study Institute on Real-Time Control Page 8

174

October 5, 7992

The half-life of any new control system is estimated at 10 years, requiring its design basi!
to support an evolutionary and adaptable implementation path. The design of a new contro
machine is predicated on a number of base hardware technology enablers, certain system ano
applications software paradigms, and competitive and technical pressures. For the purposes
of this paper, we will not consider market or financial drivers, although they are in many
respects more important than technical issues.

3.1 Hardware Technology Drivers

There are a number of important hardware trends that must be considered. Circuit densities
are increasing at about 25% per year, doubling every three years [Hennessy9O]. Device
speeds are increasing at a similar rate. This is equivalent to realizing the same device
functionality in half the space at twice the speed every three years. As a related
development, the cost per processor instruction cycle is declining at 25% per year. This
yields 100% additional processing capacity (operating at twice the speed in half the space)
for the same cost every three years. The basis today is 25 MHz machines. By the mid-life
of a new system we will be able to use 200 MHz processors in the same physical space and at
the same prices as today's machines.

The cost of memory is declining at 15% per year, dropping by a factor of two every five
years. DRAM densities are increasing at about 60% per year, quadrupling every three
years. Therefore, in the span of just 10 years we should see twelve times the memory
density at one quarter the cost. At the same time, application address space is being
consumed at one additional address bit per year, on average, suggesting we need an additional
1 0 bits of address over the design half-life of a new machine. In today's control systems we
use about 17 bits of address space per LO device, 21 bits per Li device, 23 bits per L2
device, and 24 bits per L3 device. By the year 2005 we estimate that LO devices will
utilize 26 address bits, with 32 bits at L1, 34 bits at L2, and 36 bits at L3. Clearly, 64-
bit processors are required to implement the upper domains of the next generation of
machines.

Disk density is increasing about 25% per year, doubling in three years [Hennessy90]. This
keeps pace with the consumption of DRAM, and suggests that over the life of the system
secondary storage demands will increase for two principle reasons. First, backing storage
is required to contain (at least part of) the static images of the Li -L4 machinery. Second,
significant archival storage is required to log the operating history of the plant. For
example, a plant with 1,000 field measurements sampled at 1 Hz would produce a raw LO
data rate of 64 Kbps, assuming 64 bits per point (data, plus status, plus time stamp). That
represents a potential uncompressed LO storage requirement of over 2 Terabits per year, or
250 Mbytes per point per year. Assuming an average compression factor of .6, we can
estimate an appetite of 150 Mbytes per point per year of required archival storage capacity.

Available communications bandwidth is increasing by a factor of 10 every three years. Its
basis today is 10 Mbps, yielding 100 Mbps by 1995, and 10 Gbps by 2005. This bandwidth
is expected to be absorbed for a number of reasons, primarily at automation levels L2 and
L3, including: i) the routine use of multimedia man-machine interfaces that support
integrated voice and full-frame video display systems; and ii) the increasing utilization of
optical sensors. These sensors have application in many control domains, but when used for
high speed flat sheet production (such as steel, film and paper making) can produce
enormous volumes of data in very short periods.

This brief summary suggests that by the end of the design half-life of the next generation of
plant control systems (circa 2005) the computational nodes of the system will routinely be
operating at 200 MHz, supporting an address space of 30-40 bits, intercommunicating at

NATO Advance Study Institute on Real-Time Control Page 9

175

October 5, 1992 0

10 Gigabits per second over an optical mesh, collectively tracking and controlling an
evolving plant state comprising over 106 objects, and utilizing Terabyte backing storage
subsystems. This scenario points to the real design problem -- software -- its creation,
configuration, deployment and maintenance. 0

3.2 Software Paradigm Shifts

Building high capacity real-time distributed computing systems has been motivated in a
number of applications domains, including military command and control, industrial
process control, public transportation, and telecommunications applications. These domains 0
are closely related in terms of growth in demand for real-time distributed hardware and
software based functionality. This demand in the industrial automation market segment is
characterized in the figure below.

In FY92 it is estimated that 45% of revenue derives from good old fashion LO-L1 regulatory
controls. 25% derives from more advanced L2 supervisory controls; 20% derives from 0
professional engineering services across the domains, but not including custom applications
software development and systems integration; and 10% derives from L3 plantwide control
functionality. Over the four year period ending in FY96 it is estimated that the process
automation industry will realize an 11 % CAGR in its core Level 1 business, 40% CAGR from
Level 2 supervisory control, 75% CAGR from professional services, and 100% CAGR in the
Level 3 plantwide automation sector.

Aujommom LOO 3
Pin oalamP. SYisera

AuAonilon Sysms & Servles Growth Profie

kALARM LOW 2Pmmm Cow. S•.uom. P•ufi•e Enm•

FY92 8,amg Mot
ALUmom LoM I

FYN
eg5

Cx

140% dFY2 -10% .
__9 75% V~~a

1000

40% Co2ll

20%0

The absolute numbers are debatable, but the trends are clear. Over the next five to ten
years the automation market is expected to grow by well over 50% CAGR in the consumption
of upper level and inter-domain applications of control. Within the Li control domain it is
expected to grow less than 15%. Any strategic investment in technology must clearly
support the development of Level 2 and Level 3 control software, its vertical integration, 0
and its attendant professional services products.

NATO Advance Study Institute on Real-Time Control Page 10 0

176

Ocobr 5, 1992

The definition and implementation of software capable of correctly controlling a plant that is
hosted on a distributed computing system provides a significant technical 3nd marketing
challenge. Classical programming models, methodologies, and tools are not sufficiently rich
to handle either the complexity or volume of validated code that can be hosted on distributed
multi-processor configurations whose nodes routinely support 40 bits of addressability. A
new programming model is required, one especially focused on heterogeneous
multiprocessing of mission critical applications.

The work we and others have done supports adoption of a virtual machine model based on
objects, ports, and threads as demonstrated under various assumptions in the Mach
[Rashid86] and Alpha (Northcutt87] micro-kernel projects at CMU, Chorus from Chorus
Systemes, S.A. [Rosier92], OSF/1 from the Open Software Foundation [Leopere92]
[OSF92], and the Mach/RT project at the Center for High Performance Computing (CHPC),
Worchester Polytechnic Institute [Shipman92]. We will return to the implications and
application of this programming model in a later section, but will first consider the real-
time control problem domain from an applications level perspective.

3.2.1 Integrated Vertical Applications

The figure below defines the control problem space for the next generation of control
systems in terms of object g.-7r,;larity (ctrio s-p) and response time (..e..,..t to state
variable persistence and control fidelity). Industrial automation systems must be capable of
hosting applications whose access rights and essential resources extend from L4 downward
through LO. Guaranteed response times must have lower bounds in the sub-millisecond
range. Measurement and derived process-state must be stored for as long as decades. The
business opportunity expressed here is to provide platforms and related applications that
follow the arrow up the commercial "food chain" (as depicted in the previous graph). As
hardware platforms and system operating software are continually rationalized (i.e.,
standardized and made commodities), the real value added to the marketplace will be i) the
L0-L1 front ends, ii) the horizontal and vertical control applications, and iii) the attendant
professional services.

ojeCt 0-ad-ty
(con •span)

miter-j& L4 L

10-pl- 10 L3
L2 Po.k

r~emtawy L2

~SdUC ~ o10 Opofic~es 4

I' II respomeff
10 14 10-1 104 107 109 (scn)

To realize systems within this space that adhere to "hard real-time" [Jensen92] operating
constraints we require a new approach to system design. The development of control policies
and mechanisms that engage the services of objects arrayed vertically from LO to L4
requires a programming model that is fundamentally different from that employed in
contemporary systems. First, the model must provide semantics that are consistent across

NATO Advance Study Institute on Real-Time Control Page 11

177

October 5, 1992 S

the levels. Second, the underlying hardware environment must have known performance and
reliability measures. Third, the system must be scalable, since plant control policies and
mechanisms, and end-user requirements will evolve over time. And fourth, the next
generation of automation and control systems will have to connect to, and interoperate with,
the thousands of installed legacy systems already in place world-wide.

"Vertical application" refers here to the capability to engage the services of objects within
the sensor-actuator, regulatory, supervisory, and plantwide domains on behalf of specific
plant control policies. This require- defining mechanisms in a semantically consistent
manner across the domains. Continuous emissions monitoring is a good example of a
commercially relevant inter-domain application. Applications of this type require the
processing of a variety of data types with wide variations in temporal granularity, the
preservation of measurement profiles on long-term stable storage, often complex man-
machine graphic presentations, and relatively complex numerical methods.

In heterogeneous systems, vertical applications require adherence to inter-level
programming interfaces up and down, and across the hierarchy. POSIX [Zlotnick9l] and
DCE [OSF92] are examples of well-defined interfaces pertaining to the boundary layer
between applications and operating system software and among applications. Such interfaces
must be defined for the application domain as well (i.e., distributed contro! system
semantics). rhe interfaces may or may not be standardized a la ISO, but for the application
to be stable over the life of its implementation, the interfaces must at least be stable. In a
homogeneous computing environment the inter- and cross-level interfaces will be stable by
definition.

Representative applications identified for deployment within the intra-plant control domain
vary by industry and business practice. The figure below gives some flavor for their
character. These 'multi-vendor applications" are typically bolted together to sntisfy the
needs of customer sales-order projects. The process is classical systems integration work,
generally at or above L2, resulting in ad hoc solutions with limited reuse potential.
Furthermore, the hardware and softwa;-e elements above L2 are typically outside purchased
equipment and under the design control of third-parties. Therefore, the total operating cost
of the resultant system can be rather high given the maintenance and complexity of
upgrading such systems.

ToW .umlry Ir •,'omw Ug" Laor UyI DM" PW• Rokr. DOW

Level 3: N"rb ftn kgn Of t f E-Aufnarm a wia, m Re Pa --
PPntid eý FbuceN MW~d so"& ba awt Orce Dmwnwi M~WM CO P~UFVgP~gw~. Pwducl QUeCY M"~ En~owrs-- Syiom PiW4 Enrq wpm TrarrqSmnnuw,,

P-Wwi nW~r pnoiuam, ftreai B- FINK 9yamiw M1iM Saway Symmsu
L2 9Mdvga~n WM1 iJW UWs PUrI AWMnntV commuAWA

Level 2: RoiJ1r",e SoC Area EruvWy M0¶i Caiya RoAn, MU Emwtgey Sraa i

Supervisory Pe Coiap or Lmotrv SWM" Amn kcoaiir ho' PACO@ M"
Advancd Ar• a Conub Pm ^Nft Prom OAnas Am& SaMuy Syme.m

Li Sn1vw~m~bi Pfoatm. odett Ama AMafM Conmunwnascr

Level 1: Clase: Low Ctar" LOCO So" U Au~mw~o PM8 Iodwil;
Reuaoy PLC Semc Corevi Fleduwden, "mGu,.mert caba It10 Aualo C~aftm
R~uitoyFaul Ie, mn Seen & OeM Co4"cumn Reguawr Twuvng AddWUy CarlMi

Lo grad~wuaturio C~¶WdWM CcvuU Piae Ahmvrrn C,¶VunraAMo

Level 0: SwmI Rd Self Cabrloung SW.W FllmV
Trns~ducer j Aduamu 3mfl swmur DeagMM SWre Esu~m~n

s rvm8 Drcmm AMMerMor AmnIrm

NATO Advance Study Institute on Real-T-ime Control Page 12

178

October 5, 1992

An important goal of the next generation of control systems is to "objectify" these
applications through the definition and use of standard interfaces at the application (e.g.,

* DCE) and operating system (e.g., Mach) levels. This should result in moving the problem of
constructing integrated control applications from a programming problem to a software
configuration problem, with a concomitant reduction in total-installed and total-operating
costs, an increase in reusability, and an improvement in total product quality and customer
satisfaction.

* 3.2.2 Wider Spans of Control

Applications with wide control spans (e.g., those at L3) reach across many lower level, yet
autonomous, control domains. These applications invoke the services of objects at levels
above and below the end-user domain, but the execution threads spend most of their time
wandering the object domains at lower levels. The semantics are a mixture of client-server

* and peer-to-peer, neither strictly dominant. Energy management within a multi-area
plant (e.g., a pulp and paper mill) is a good example of a wide-span control problem with
cooperating process semantics, but also containing global optimization, or client-server
relations. Energy management is considered a L3 function (by the nature of its end-user's
management position) that requires services from many essentially independent L2 and Li
control objects.

3.2.3 Greater Control Fidelity

Higher performance systems are possible by the nature of the technology-cost curves we
are riding. Higher performance begets greater speed, higher precision, and increased
functionality leading to greater control fidelity. Increased fidelity implies higher loop-

* level bandwidth, increased control accuracy, and greater persistence of abstract data types
utilized within the system. Larger, more reliable storage allows operating history to be
brought to bare on real-time control strategies, facilitating the construction of expert
systems and learning automaton. These opportunities are clearly control level-dependent.

At L0 control fidelity refers to the precision, in both time and value, of the input and output
transducers. At Li fidelity concerns the accuracy of the process models that govern
regulatory control policies. L2 fidelity concerns the correct synchronization of regulatory
policies on behalf of supervisory control functions. And L3 fidelity, albeit more coarsely
grained, provides precision to computations governing supervisory domain scheduling and
associated plant coordination and control functions. Fidelity in these various control
domains is also application specific. The next generation of control systems should therefore
provide for the specification and implementation of policies and mechanisms governing
domain-specific fidelity.

3.2.4 100% Availability

Availability is at the center of what is meant by mission-critical control. The next
generation of control systems must be inherently survivable under a broad range of system
failure modes and plant operating conditions. At the heart of the survivability issue are
requirements for fault-isolation, graceful degradation, dynamic reallocation of resources,
and task migration semantics. Alpha micro-kernel semantics [Clark92] are, for example,
particularly well suited to provide the underlying distributed operating system mechanisms
for implementing high availability.

Availability has its roots in hardware design. The platform must be constructed to support
redundancy of processing nodes, communications paths, and operator interfaces. The
critical factor is, once again, robust system and applications software.

NATO Advance Study Institute on Real-Time Control Page 13
179

October 5, 1992 0

There are three levels of software that are of concern. At any given node in the control
network there will exist components of a distributed application domain-independent real-
time operating system (D/OS). The D/OS provides a reliable and consistent distributed 0
system programming model, or virtual machine, to the next layer of control node software.

This next layer, or real-time middleware, comprises control-domain specific services that
create on top of the general D/OS virtual machine services the personality of a homogeneous,
fault-tolerant, high-availability plant control system. This personality defines a consistent
model of a plant control system (PCS) that is supported by specific hardware features which •
are required, but not necessarily seen, by the control applications that are at the next
abstract layer.

The top layer of software is seen by the PCS programmers who are tasked with creating
solutions to customer control problems. This layer of programming abstraction is
optimized for the problem-domain, and presents an environment where availability can be
assumed (i.e., provided by the underlying layers) and abstracted out of the LO-L4 domain.
Thus the D/OS and the PCS layers are responsible for providing services that guarantee the
reliable operation of the control platform, and the application programming layer is
responsible for providing services that control the plant.

3.S Lower Per-Function Cost

The cost structure of contemporary control systems, as perceived by the end-user, is a
critical design factor that today is centered on the idea of "cost-per-point." This bias has
its roots in the low level sensor-actuator-regulator manufacturing roots of DCS and PLC
vendors, and the resulting conditioning of the market. For example, analog input or output
costs about $50/point today, or $800 for a 1 6-point multiplexed A-to-D card. On the
basis of the trends discussed in Section 2.1, a 30,000 tag system containing 10,000 I/O
points would cost $.5M for the Li front-ends, not including the LO devices. The next
generation must treat this costing as an initial ceiling, and follow the relevant cost-
performance-volume curves.

In the next generation of control systems software will be the single largest cost to produce 0
and maintain, so packaging and pricing strategies will have to be significantly altered from
those used today. In addition, since the functionality offered at Li -L3 represents layered
software services (e.g., D/OS -> PCS -> specific customer control applications) there are
opportunities for "packaging control" in new and creative ways, perhaps bundling it with
its requisite I/O, and offering the ensemble as a formalized subsystem. These issues are 0
open, yet relevant to the development of the next generation of control systems, for they
establish the cost-per-function profiles which govern the design and implementation
decisions.

3.6 Backward Compatibility

Backward compatibility is an absolute requirement. The continuous process industries

build and operate plants that exhibit 10-15 year half-lives. The automation infrastructure
of those plants must exhibit the same installation life-times. Therefore, the next generation
of control systems must connect to and interwork with these legacy systems.

There are esse,,tially three means to accompiish this end. The first is to faithfully emulate 0
the legacy systems (i.e., their applications and hardware characteristics) within the new
environment, and to connect to the older low level I/0 systems. The second is to host only
legacy applications, with certain restrictions and caveats, and ignore the faithful emulation

NATO Advance Study Institute on Real-Time Control Page 14 0
180

S ~October 5. 199Z

of legacy hardware. The third is to develop a formal gateway through which the next
generation system views the legacy machinery as a server. A formal legacy system service
must be provided through one or more of these mechanisms, most likely a limited version of
the second, and definitely the third.

4. Programming Semantics for Integrated Controls

The semantics we propose here are independent of hardware platform. The hardware is
abstracted out of the programming domain by the underlying distributed kernel and
operating system services (D/OS.) The hardware environment for the PCS can be viewed as
a multicomputer system comprising one or more multiprocessor nodes interconnected by a
communications network that makes the multicomputer transparent to the application. The
underlying D/OS provides services that expose the distributed nature of the hardware should
the application require it, but a basic principle of the PCS is to mask from the applications
any access to the real hardware of the machine. The stylized run-time environment of the
Elsag Bailey machine node is depicted below.

1a procesft node configuration

reM.-time control
appicat~ons application aplication lca o6

& system & system communacations
layr IyeC (g., tcp/p)

eha _________ _____________

communic~atitons=

0 Cog9. (0s)

sibs wa nt kwa sVrS kwnel

o~ba monitor

The real-time application domain of the PCS is graphically depicted below. Market-specific
applications, such as gas turbine controls, are defined in terms of interactions among
specific control domain objects. These objects define the abstract data types that specify
behaviors of control elements, according to some application-specific control policies. The
various industry-specific object libraries will share many common elements, from
physical plant elements (e.g., valves and motor controls) to control strategies and
mechanisms. Furthermore, Li control elements may inherit Li1 object properties, defining
higher level meta-objects. This expanding scope in the control hierarchy is depicted in the
figure horizontally, right to left. The figure indicates that the application has (potential
direct) access to objects residing at each control level (i.e., to objects with varying spans of
control). These capabilities are restricted by the definition of the application and its
activation.

NATO Advance Study Institute on Real-Time Control Page 1 5

181

October 5. 199Z

industry-specific applications

11 ITGuest
3 12 LI LO os

objects objects jJ objects objects (eg. SVRS)

dstri-,ed OS

micro kernel

distr'ibuted reamaine

4.1 Micro-kernel Level Semantics

The underlying kernel semantics are based on a fusion of the Mach 3.0 micro-kernel
(Loepere92] and those features of the Alpha OS [Clark92] responsible for real-time
resource management, as being implemented in Mach/RT [Shipman92]. The fundamental
abstractions supported at this level are

* task the unit of resource allocation, a container to hold references
to resources (handles) in the form of a virtual address space,
a port name space (set of port rights), and set of threads

* thread.....the unit of processor utilization - an execution point of
control within a task defined by a program counter, register
set and stack

port a unidirectional communications channel between tasks,
accessible only via send/receive capabilities

* port set.....a set of ports that can be treated as a single unit for the
purposes of receiving a message

* port right a capability allowing a task to exercise certain access rights to
a port

* port name space an indexed collection of port names, each of which names a
specific port right

• message a typed collection of data objects passed between two tasks 6

* message queue... a queue of messages associated with a given port

* virtual address space..a sparsely populated index of memory pages that may be
referenced by the threads within a task

* memory object an internal unit of memory allocation that represents the non-
resident state of the memory pages backed by this object

* memory cache object a kemel object that contains the resident state of the memory
objects

0 processor a physical device (cpu) capable of executing the threads of a
task S

* processor set.....a set of processors, each of which can be used to execute
threads assigned to the set

NATO Advance Study Institute on Real-Time Control Page 16
182

SOctober 5, 1992

node an individual multiprocessor within the PCS multicomputer
environment

* host the distributed PCS platform hardware taken as a whole

* device a physical device (resource) available to a user-mode task,
such as a LO transducer available to a Li task

event an (asynchronous) signal dispatched by the kernel to zero or
more tasks executing on the multicomputer

4.2 D/OS Level Semantics

The semantics of a distributed real-time operating system (D/OS) suitable for the next
generation of plant control systems (PCS) is subject to debate, and will likely be of a
proprietary nature. The control environment and ;ts requirements for operating system
services remains largely at the discretion of the implementer, since the general
requirements of "open systems* do not directly apply to the domain of real-time control.
This is especially true within an industrial control setting where the manufacturing
processes (e.g., recipes) used to create products are themselves of considerable value. With
the ability of mounting guest operating systems on selected nodes of the PCS, the
requirements for openness and inter-operability are easily achieved.

Bailey Controls, in conjunction with the Elsag Bailey Process Automation Group of
companies, is currently defining D/OS services specifically tuned for the requirements of
industrial continuous and batch process automation. The specific details of this layer will be
defined in subsequent papers, but several of the salient features can be outlined as follows.

Under specific configuration rules, the kernel-D/OS environment will form the basis of a
class of virtual machines that can be scaled onto physical machines ranging from LO devices
(e.g., pressure transmitter) through L4 devices (e.g., energy management controllers).
These control subsystems may then be (incrementally) blended into a larger control system
("mesh") with minimal risk. The requirement for overall system scalability demands that
D/OS services are themselves partitioned in such a way that control nodes can be added and
deleted from the mesh dynamically, with minimum upset to the operating plant.

The physical configuration of the PCS is determined by a control problem-domain rule base
that takes into account domain complexity (control policy semantics), redundancy
requirements (availability), inter-node distances (plant topology), and speed. These
factors contribute to the specification of the number of nodes, their respective compute and
storage capacities, the number and speed of interconnecting links, the size of the name-
space within and among node multiprocessors, and the configuration of D/OS services. The
aggregation, at one end of the configuration spectrum, is a uniprocessor with dedicated I/O
(a small "entry level" system). At the other end, it is an n-cube mesh of multiprocessors.
We believe that the practical range of PCS configurations will lie in the 1- and 2-D mesh
structures that support n:1 and 1:1 redundancy among processor sets that define (at least)
logical nodes dedicated to specific plant control tasks.

The mesh concept views nodes (one ore more processor sets) as execution site's for control
policies that are relevant to specific control domains. Nodes can be associated into nodesets
that host the regulatory and supervisory applications. Nodes and node-sets generally show
affinity by the nature of the control policies that execute on them, and by the resource
scheduling policies required for the timely execution of those policies.

NATO Advance Study Institute on Real-Time Control Page 17
183

October 5, 1992

A control domain generally has both physical and logical connotations, but is application
specific. The D/OS provides middleware services relevant to developing, configuring and
managing the suite of applications required to manage the customer's plant. These services
include:

* configuration services PCS configuration specification and management services

* domain databases.... PCS problem domain configuration services

* operator interfaces PCS man-machine interface environment and tools

* event management ... PCS system-wide event (alarm) management services

* directory services PCS name services

* security services PCS security services

* filing services PCS file system services

* intemetworking PCS network interface services

* archiving services PCS activity and data logging services

* reporting services PCS trending and reporting services

• control policies PCS control policy specification services

* transnode scheduling PCS resource scheduling services

* fault recovery PCS fault isolation and recovery services

* control events PCS event response policies and mechanisms

Many of these services will be applications that reside on the "guest nodes' of the PCS,
since they are services that are either required during the development and commissioning
of the customer's system, or are not engaged in the direct control of the plant and can run
with relaxed availability requirements. Hence, these D/OS services are resident on the PCS
host mutticomputer, but occupy resources on only a subset of the nodes of the system. The
particular nodes engaged in supporting these services, versus the node-set responsible for
hosting the actual plant control policies, are determined at configuration time and are
dynamically modified under faults, forced reconfigurations, and dynamic 'what if* 0
conditions.

4.3 Control Application Level Semantics

The semantics of the application layer of the PCS are based on i) classical linear, sequential,
sampled-data control [Houpis92], ii) advanced non-linear, stochastic, optimal estimation,
filtering, and control [Isermann91]; and iii) controls based on heuristics [Slagle7l] and
such non-traditional mechanisms as neural and fuzzy logic controllers [Kosko92]. These
semantics are quite rich in both traditional usage and theory, and this paper is not the forum
for a tutorial review.

In the situation where control policies require the services (resources) of applications
running outside of the execution domain of the distributed operating system, those services
can be mounted on a guest operating system (e.g., NT, VMS or OSF/1) and run as a server on
one of the nodes, or one of the processor-sets, of the host.

As an example, a continuous emissions monitoring (CEM) application might engage the
services of plantwide, supervisory, regulatory, and transducer objects of the PCS. These
objects contain (possibly multi-threaded) tasks that carry work on behalf of a number of
concurrently executing applications. The CEM application might begin its life by invoking

NATO Advance Study Institute on Real-Time Control Page 18 0
184

October 5. 1992

activity in a L3 object (i.e., the application-level thread) which manifests itself as possibly
many parallel Mach execution threads. The CEM application progresses along this two

dimensional trajectory in time, sequentially through the CEM application (a la the client-

server paradigm), and concurrently along the various control policies as instantiated in the

subservient control objects (a la peer-to-peer).

The figure below is a simplistic depiction of the "application thread" meandering through
the distributed objects that govern PCS control policies.

L3 object
in4ocation

(eg, user request) 3 object LZ object Li object LO object

virtual machine

jsnbuted real matn

This figure conveys the peer-level semantics of control policy objects whose (ideally,
provably correct) operations are restricted to a given problem domain. This model is being
used to test the concepts of dynamic replacement of running control policies by substituting,
in real-time, the control policies governing various processes. This dynamic control policy
feature is critical to fault isolation, load balancing under upset conditions, policy "what ifs"
based on high fidelity simulations against the running plant, and other related applications
requirements.

5. Conclusions

Within the framework presented here, there are a number of open conceptual,
implementation, and technology-related issues. They represent ongoing efforts in defining
application domain and platform semantics that are required to realize the next generation of
plant control systems. The business drivers for integrated vertical applications in an open
real-time computing environment clearly dictate capabilities not found in current
distributed system platforms, but which we believe are enabled by the computing
environments defined in the cited work. Key to these new computing technologies is the body
of work related to the real-time distributed resource managemrn-t architecture as defined in
the Mach [Rashid86], Archons (Northcutt87], and Clouds [Dasgupta88] expeience of the
late 1 980's. This work has led to the merging of capabilities in the standards-based OSF
environment, especially the OSF kernel work at CHPC, OSF Advanced Development, and
elsewhere.

We believe the experiences gained to date justify the development of distributed real-time
platforms based on non-traditional scheduling policies. The key feature of a new class of
policies is their basis in the distributed threads model, and the ability to associate policy
with all the resources of a computation, even if such policies exist across processors in a
processor-set. This transnode scheduling capability is critical to the implementation of
adaptable configurations that can be restructureG under the stochastic nature of real-time
mission critical computations.

NATO Advance Study Institute on Real-Time Control Page 19
185

October 5, 1992

6. References

[Anderson87] Anderson, D.P., Ferrari, D., Rangan, P.V., and Tzou, S-Y., "The DASH
Project: Issues in the Design of a Very Large Distributed System', Report
No. UCB/CSD 87/338, UC Berkeley EECS Department, January 1987.

[Baker89] Baker, T.P. and Shaw, A., "The Cyclic Executive Model and Ada*, The
Journal of Real-Time Systems, Vol. 1, 1989, pp. 7-25.

[Booch9l] Booch, G., Object Oriented Design with Applications, Benjamin/Cummings
Publishing Co., 1991. 0

[Cheng88] Cheng, S-C. and Stankovic, J.A., "Scheduling Algorithms for Hard Real-
Time Systems - A Brief Survey", Tutorial on Hard Real-Time Systems,
IEEE, 1988.

[Clark92] Clark, R.K., Jensen, E.D., and Reynolds, F.D., "An Architectural Overview
of the Alpha Real-Time Distributed Kernel", Proceedings of the USENIX
Workshop on Micro-Kernels and other Kernel Architectures, USENIX
Association, April 1992, pp. 127-146.

[Dasgupta88] Dasgupta, P., LeBlanc, R.J., and Appelbe, W.F., "The Clouds Distributed
Operating System: Functional Description, Implementation Details and
Related Work*, Proceedings of the 8th International Conference on
Distnbuted Computing Systems, June 1988.

[Ehling67] Ehling, E.H., Range Instrumentation, Prentice-Hall, 1967.

(Hennessy90] Hennessy, J.L. and Patterson, D.A., Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, 1990.

[Houpis92] Houpis, C.H., Lamont, G.B., Digital Control Systems - Theory, Hardware,
Software, McGraw-Hill, Inc, 1992.

(Isermrnn91] Isermann, R., Digital Control Systems, Vol II, Stochastic Control,
Multivariable Control, Adaptive Control, Applications, Springer-Verlag,
1991.

[Jensen85] Jensen, E.D., Locke, C.D., and Tokuda, H., "A Time-Driven Scheduling Model
for Real-Time Operating Systems', Proceedings of the IEEE Symposium on
Real-Time Systems, IEEE, 1985.

[Jensen90] Jensen, E.D. and Northcutt, J.D., "Alpha: A Non-Proprietary OS for Large, 0
Complex, Distributed Real-Time Systems', ACM Press, 1990.

[Jensen92] Jensen, E.D., "A New Perspective on Realtime Computing for the 1990's,
Draft Revision June 24, 1992", Digital Equipment Corporation, 1992.

[Jones86] Jones, M.B. and Rashid, R., "Mach and Matchmaker: Kernel and Language
Support for Object-Oriented Distributed Systems', OOPSLA '86 •
Proceedings, September 1986.

[Lehoczky89] Lehoczky, J., Sha, L., and Ding, Y., "The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior', IEEE,
1989.

[Liskov82] Liskov, B., "On Lingusitic Support for Distributed Programs", IEEE 0
Transactions on Software Engineering, May 1982.

NATO Advance Study Institute on Real-Time Control Page 20 0

186

1

* October 5, 199Z

(Liu73] Liu, C.L., and Layland, J.W., "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment', Journal of the
Association for Comptuing Machinery, Vol. 20, No. 1, January 1973, pp.

* 46-61.

[Loepere92] Loepere, K., "Mach 3 Kernel Principles", Open Software Foundation and
Carnegie Mellon University, OSF Research Institute, July 1992.

[Northcutt87] Northcutt, J.D., Mechanisms for Reliable Distributed Real-Time Operating
* Systems - The Alphas Kernel, Academic Press, 1987.

[OSF92] Open Software Foundation, Introduction to OSFI= DCE, Prentice Hall, 1992.

[PE190] Protocol Engines, Inc., The eXpress Transport Protocol Specification,
Version 3.5, August 1 990.

[Rashid86] Rashid, R., "Threads of a New System", Unix Review, August 1986.

[Rosier88] Rosier, M.,10 et al, "Overview of the Chorous Distributed Operating
Systems", Proceedings of the Workshop on Micro-kemels and other Kernel
Architectures, The Usenix Association, April 1992, pp. 39-69.

(Sha83] Sha, L., Jensen, E.D., Rashid, R., and Northcutt, J.D., "Distributed
-* Cooperating Processes and Transactions", Proceedings of the ACM

Symposium on Data Communication Protocol Architectures, March 1983.

(Sha9Oa] Sha, L. and Goodenough, J.B., "Real-Time Scheduling Theory and Ada®",
IEEE Computer, April 1990.

(Sha9Ob] Sha, L., Rajkumar, R., and Lehoczky, J.P., "Priority Inheritance Protocols:
An Approach to Real-Time Synchronization*, IEEE Transactions on
Computers, Vol. 39, No. 9, September 1990.

[Schantz86] Schantz, R.E., Thomas, R.H., and Bono, G., "The Architecture of the Cronus
Distributed Operating System", Proceedings of the 6th International
Conference on Distributed Computing Systems, IEEE, 1986.

[Shipman92] Shipman, S., Teller, M.J., and Paciorek, N., "Mach/RT Kernel Interfaces,
Draft Specifications, Revision 1 ", Center for High Performance Computing,
Worcester Polytechnic Institute, 1992.

[Slagle7l] Slagle, J.R., Artificial Intelligence: The Heuristic Programming Approach,
McGraw-Hill, 1971.

[Smook89] Smook, G.A., Handbook for Pulp & Paper Technologists, TAPPI, 1989.

[Zlotnick9l] Zlotnick, F., The POSIX.1 Standard, A Programmer's Guide,
Benjamin/Cummings, 1991.

NATO Advance Study Institute on Real-Time Control Page 21

187

KEY ISSUE
9

Computational Model

* . Should define functionality, concurrency, termination,
communication, (refinement).

* . Should contain attributes to represent requirements
such as release time, period, deadlines on computation
and communication, utility/benefit etc.

* Should contain attributes to represent derived
properties such as worst case resource usage,

* completion times (worst case or probabilistic),
allocations, priorities etc.

. Should allow decomposition, with the attributes defined
at appropriate levels.

* Should recognise that all computations/
communications take time.

* Should facilitate analysis of final (and incomplete)
designs.

189

"* Should allow the non-determinacy in the environment
to influence the dynamic behaviour of the system.

"* Should not force premature commitment to
configuration issues.

Above requirements lead to an asynchronous model of
interaction.

Two Design Methods have been built upon this
computational model:

* HRT-HOOD - a structured method

* TAM - a formal method

1

0

190

0 HRT-HOOD

Gives explicit support to common object classes:
Active

Periodic
Sporadic

0 Passive
Protected

0 Periodic and sporadic objects contain a single thread and
communicate via passive and protected objects.

Attributes define deadlines, offsets, worst case response
times etc.

_* Rules of decomposition force the crucial objects is a
system to be predicatable in their worst case behaviour.

Transformation are available from HRT-HOOD designs to
Ada 9X code analysed (off-line) using static allocation (of
objects to processors), and static priorities with immediate
ceiling priority inheritance

191

A CONTROL SOFTWARE

H Pal C OW RSO

-b Mmmqs)

SERIAL US O9l

CS40mc

192 110

BUOU

CNrOLCNTRLLE

AM~
*= StWbee1(Axis, 2M) -- - - - - - - - -5

A5USetDw* i~hlxu!(

embled)-- - - - - - - - - - *

Pru~Gtojurait

i ~ rtg W)
- - - -

- - -Z

ASWRue~M -- J

PSI FuM ~

Figureic 4:ThkCNTOLERObec

Furherdecmpoitin o th SESO obectis how inFigres5 t 9

W Ca193

7A CONTRMOL SOFTWARE

A1 RECIVEFROMBUS A CONTOLLER Pa I COxVERIOIN--

-ms-

h- CMb
"aSw-g.M-06

r--WIWETow 0.9

Figur 3:l TheCotrl Sfar

192

CONTR-0-

A CONTROLLER

ASER

-. 2 c a l d 2 - - - - - - *G

ASER A S-SORS C C~b1ROWW

- cbled) -il - -------- Z

Pr! SMIALEUSAIP ATATU
C515=w

SI

Fiur 4_Te OTRLLR bjc

FurherdeompsiionoftheSE SOR obetCs)hwn iurs5 o9

IWCETT~ 0 C193

SENORA4

A0

032

Fiur 5:ThtSNSR bjc
Tat

GYMTM

y0
met u S94

I CCI2TtOLLE.SENSORSDES

__A IRES

I I

Fgr 6: The ILRES Object

"The IE sesor controller consists of two precedent constrained cyclic objects with a tim offset
between the two implementing the required synchronisation. The first object. R.EQUEST IR.ES DATA,
sends a request to the IRES (via the serial bus). The second object will receive and interpret the sensor

I ~ values. The relative time offset between the task releases and the deadline of the first object ensures that
the sensor device has a chance to respond (at least 30 ins).

I

195

TA fl aA~ +h e

4w sA4 + Izuiz pmifles

196

'Xk~JtModel T~orniN

erpu±/au~p.A shudt'
o4A Jt' +e

03). *JP c1d

r. cu4±eo

197

COMWJNw.,CaiO.hA rqechay~vaSM

s~n~ovreeader

Pos~ve n~eqers -±

198

S5.5 IMM e~t

.5 pe4-c+ aiotan

*A \(S:T) prw.Aie shwtd

tvA

* 199

S',,1jelse

SA 2

2000

..- -----

,1I~ S

Cs53A

131

Wa. e__%

A
B

A

201

Ii (C I~m ~ I fllem.Y i)

Cr,4•-: me T

'pn

U2•.

do~

d~i~z

Nr
Ita~ rt I in.,)"

2 02 -4 4#= Itb J *e(¶fdcY

AU, ~CY4& ._____

ff7f

A A

A~~ 4 aeF.~e

if- v4.,,"

203

ao . (e3e em) 5 ntoWeA

aeCewt;% OCher' Lfl 4 i YY~e rAp:D A CA

204

j~est.J P ower?

Mok~s ~RL..

* tAuevih ae4i-ol~~_rreie

WO eti

+o encode

205

Terapoad~ L.aiic.

r~~ art 'eoviolbk es 3c)q

206

The Complemernt~ NeAcd

* Spec

20

Wh.*ere Aoes 4l~e ds, ~

o ~Wa desre.-aes

foxiecl vser~jrcoAicn0

W~aý ttx~ides 'Jerz(C.Ohiwit Scd~~

208

Reaju iemertr

0* Spec~

0f

Spe /Des;i

*~q 4koAJ-
20

oil

210

', 0 , ,

I)

12

Current Status

S• First version of HRT-HOOD defined.

• Based on HOOD V3

• Mappings defined for Ada 9X
(December 1991)

• Mappings defined for Ada 83 plus
ARTEWG CIFO-like entries for

- added functionality

• UK DRA are supporting a project
which will generate CASE tool-
support (prototype tools only)

• New version of HRT HOOD this year
to address HOOD 3.1 and final
version of Ada 9X.

211

0

Future NASA Projects

Overview of Projects and Concepts Under
Consideration for Future NASA Projects

PRESENTATION TO

Real Time Workshop
Institute for Defense Analyses

Alexandria, Va.
MARCH 1S, 1993

Ed Chevets
Deputy Chiefflnformation Sciences Divislon

NASA Ames Research Center

RMAA
Amnes Research Center

NASA Strategic Intent

- Explore Space

* Support Improvement in Competitiveness

- Reduce Operational Costs

Ames Research Center

I' 213

i0

Space Challanges

" Develop and deploy advanced methods of systems
engineering

- Span across multiple programs
- Lead to smarter, faster, and cheaper systems

* Compete effectively in an expanding international global
marketplace

" Effective utilization of cutting edge technology along with
proven technology to support cutting edge
accomplishments

SAmes W A enterJ

AmsResearch Cene

Space Trends

Increased emphasis on cost-driven (as opposed to
performance driven) projects

Flight and ground infrastructure viewed as an integrated
system

Development of integrated system engineering
environments

Avionics open architectures with standard interfaces,
modularity and commonality concepts

NASA
Ames Research Center

214

• • • I i a ! I | !! 0

0

Space Concepts

*. EARTH - TO - ORBIT TRANSFER
- Shuttle Upgrade
- Revised NLS (National Launch System)
- New Concepts

* ASTROPHYSICS
"- Miniature Spacecraft
- SOFIA

PLANETARY EXPLORATION
- Habitats

* - Rovers

Ames Research Center

Earth-to-Orbit Transfer

Shuttle Upgrade
- Advanced solid rocket motors
- Extended duration (30 days on-orbit)
- Enhanced navigation system

* - All electronic cockpit

Revised NLS
- Smaller engines (30-75 K pound payload)
- Larger engines (150-200 K pound payload)

S~~NASA==

Anes Research Center

215

S7Earth-to-Orbit Transfer (Cont'd)

Now Concepts 0
- Single Stage to Orbit (SSTO) Rockets
- Two Stage to Orbit (TSTO) Rockets
- Combination Air Breather/Rockets (Single and two stage)

"- NASP derivatives

"* Dual manned boosterlorbiter

- Small version of Shuttle
- 20 K payload vs: 30 k today

- 20 toot payload bay vs: 60 foot

- Manned or unmanned operation

- Extensive built-In teot and checkout
- Interactive operations with ground processing system

- Adaptive guidance and control

- Slgnificant reduction In dependency on Mission Control

NASA
Armes Research Center

Astrophysics

Miniature Spacecraft Project
- FY95 new start to develop capability to support wide range of

instruments (visual to millimeter wave length) for astrophysics
- Reduce size, weight and power enough to drop 1 or 2 sizes in

booster requirements
- Plan on more but smller payloads, even if overall costs are 0

not reduced
- Plan on evolution over life of multiple launches

SOFIA
- Replacement for Kuiper flying observatory

- 3 meter telescope (1 meter in KAO) •
- New version of 747 for higher altitude
- Longer flight time
- Enhanced on-board processing

Arnes Research Center

216

7 Planetary Exploration
* Rovers

- Wheeled vehicles for Moon/Mars
- Submersible vehicles for Earth's oceans

- Habitats
- Return to the Moon is stepping stone to real goal: Mars
- Lunar/Mars habitat should be designed for real time

distributed operation from start
- Ability for in situ sophisticated science data analysis
- Real time Earth-Planet data analysis/interaction
- Fully autonomous automated habitat living environment to

allow maximum science return

* Ames Human Exploration Demonstration Project (HEDP)

NASA
Ames Research Center

Submersibles

. Submersible vehicles for Earth's lakes and bays
- Relatively complex vehicles being developed for exploration

of dry lake beds In Antarctica
. Helmet mounted display systems for camera control (vehicle next year)
- Smart Instruments for underwater analytical support

- Similar technology being applied to underwater research in
joint Ames/Monterey Say Aquarium project

- Multiple sensor fusion
- 3-D graphics displays
- Smart manipulators

- All of these systems are pushing state-of-the-art in real time
control and data manipulation

- Vision procesling Is primary driver
- Interaction between multiple scientist and live scene and a virtual scene

generated In real time

Ames Research Center

217

0

Rovers

Rover vehicles for Moonrulars may have wheels or legs
- No clear decision criteria at this time
- Ames research focus on how to make the vehicle smart and

nct on the mechanical system
- Mission planning

' Path planning and tracking
* Task scheduling (rescheduling)

- In situ data analysis with smart instruments: differential thermal analyzer,
gas chromalograph. X-ray diffraction

- Data compression techniques

. Vehicle status monitoring, failure detection and reconfiguration

MOSA

Ames Research Center

Summary

There are a wide range of vehicles and systems under
consideration for future projects at NASA that will push the
state of technology in real time system operation

This talk has not addressed some of the short term issues
such as upgrades to the Shuttle Mission Control Center
and development of the Space Station Control Center
which do require elements of real time distributed control

Flight projects have been stressed because these systems
have limited resources, yet still require some 'evel of
complexity to be found in large ground based systems

Ames Research Center

218

00

00
a 0 i

0 z in

COLUL

C)L

o L-J

cnc 0 0

0 i

j
m

U) I-
LU:

0 cc 0

CILUA

0

4r.

?20

I I -� /

0

* -I,

/ / K> �. -lii 9
K __

I
0

/:\\ �1i�-

S

* (j � Z2L�I.>
if

221

'00

-0

0
0.
CL

- S
CJ,

0 CD

cc 0

CL.

4"".

C13\

-C7

(T)

222

U) ~V)

E i:Z

0o -ic

E4

E 0

22

IIt

Alt

/ 9

.1• ,/

S"I f \V .

224

224

140

2253

00

LUI

z-
LUL

0U LUI

I-- z

In0

zw

0L 0

0

z
WX-

w

CL z
00

w

ww
m-

ccJ

m0

2260

I.

U) .0ou

*0 >
0U 0 c cc~
E 'B6 • E "E

.0 o w
0 -E E

)0 m I0 ES>0a OE

I- ,0 d 0. "

o - 11 4

m 0. CL C4 0

Cl. %b E.
_~ 0& Ow ' 0a

0. CL

0 c
0c *a a.

c >CL 'n .g.
.0 .0 .C 4 00

o- -a - m

>CL ONOOO . 4 m.

CD c

0 &. 227

IL0

V0

L: ~h.

~~LU

4I

228K ~

a-

LL 0

m0f

0>

0

z
0 L

Zj >-C C/)
Fn p

0 229

z

~zcn

z

ClC
LLI W C

ccz(L

cc .0 ...

0 0

LU
LUQ

2300

ILI

cr..

ILI
LLu

ILI.

ul-

IL cc

LLI231

* a)

Vn CA

C,)D

L M CD c

(D > L 4r)U

00 a) E1--

0 a)

05 E
0

233

CA'

E %) ff;7 cc o.

E • 0

E 7E

SE-

0u Cu

a) E E
00

*0am

.. = cc"

,.. C').,.C)

0 S

234

S. .. . E , n n i i

o 0
E

aE
0 a% I

WOME 0 0tf

Law aw

82 0ia)aoa

E-

v E coo
0 0. a)

m - O0)
cr

0 C
0 E

0~ 0

0 E o)~ on

CO0 3-0 c-~ U
0 0 SOE 0 aMN

SI MO DINUM 0 0 0
MIE W a c c C 0 -W

0.UC

C UZu Cl)

235

EE

U) Cl)
-LL 0 -

'Co C U °
E N

I..- -

11all

o DE
0 cc

E _ U U.

00C

U-i

x 0a

I- 0
0 am

236

• • , i i i I I I I0

0

CcC

o'•

E 0

0 cc'C E *N

"m "-0 0 .

U) 0 ow. § n : .ý
-- ' LM_ C

: E C

La 0 E C.
o >

(I) r CLI)c

) 0- "- 04•"

*E0)o -) .-°ou

-0 E ca .%c(a.., .--m 0 .- C

- E- '-
am C Cc_(0 8 cc E am (a) *- 0 3

Cu- - 0.a z
D. E•. E cz- •

4) zScn%%O

237

Co E

U- Cc

- E 0)

Low >

E z -.

Cc W

0m. 0)

0u E ~ ft.0I M
0 a cc

CuOL C u 0.- a.O

o L.

0 r.. 0 0

0 0

0) OAMEN 0 LEMC E'
CL

4) ,..o L0 0Lu
O.E0a0

a)l 0... Cc

a) 00

2380

0 C

mi m

00

CD CA

0 0C 0 ,0
"-- 0 E

" E0 "*.

4E 00 0
cc 0 r. .

So- o 0.0E" E -. E

c 0 0 O-Cu -

z0 000 mu E 0.
0 Cu 0)o0 0 0 4)

00
a) u~0-I 039

A

0

0

cc* 0

0 4) C
m

0 4) ccQ CA
J= -. 96m ;

cc 4) 00

.00
- 0

0 0t
- E 4)

C7E 0 ww &

0 0
Cu 0

Lm 0 >E4
Cu 0 1 8. . .

2- C

aw F-

240

240

a>

oL <
w 0

0 EEa

CU 0 E l

mmmi*i 0.a '

0: a) CA q

0M CM

U.'.

*m CuD

C,3

*

SU

241

a OWNS0

ol-on

ROERW

Cn 0 U

a) =0

- cc h.0

U) aML) 0 CuM .

04I 0. 0
zE a) 0 Lona -0 LL

0I0 a a .* a)-a

0) Cc .0 0.
> 0 Mu MC

(0 U -
4

o-c * - u

ago 0 . Cu a

0lo Cu Eti 00 0
-'l U) M. 0~ Cq. (pD3

CD4. LM 0 0 0CuN

Cu0 0=0 In

7u 3 LZW cc uC Cuc

242

co

- 0

* cc
0.0

(I))

I I-

0ý 0.a

a))
C.0a uj L

0 01 0
0 Z 0

< Cc
CO I.-

* 243

0 CL

0 m

o co. U.

(D a)
.M I*- I&M) 0.

a)
U.

0~. 4.. 04).fto.>%U 7o 0
m.. ONO.ia L. 0 J

cc. 0 0 *
%onC > -C 0. a)

0. m ma 0 o a-0a) B = a C

C) 4) SCý CL

) Cc > Cc%-mn

244

* E
0 0

0 -co

c 0)

ow M
LM 0 (

'I',u

Cl) 'U 0

0uC
CuCc0 0- Eu

0) Cu g0) C) tm C
Cc a) NO 0 a

LM 0 0
I.> o.c 00)
-~ >.0C

Cl) ~ C24C

W 0-El cc I

a)0 LM) a

(00 00~
0 C~ 0 0aMew

a - 0 >W aa %c ts

inCfm WOO

L..0 00
~~~"~o E0 C I._

00 EC 2M~

E) 0 M C

oa)E~ 0~. r*5~

a) 0. S0 0~

-~~~~ C.3"-- 0 0  E u

246



c:c
0 m

So~Us. U _-_

oE cc >
Cu~ a)

::3 • m-E " "
CE () CU .

-E

a)E~

* I... 
I II I I

U_ _ 0

II- 'v~m-~ ~U) 
IE

C- 
w

Cu *00~ E~

U

L I .L . .U L Mc

£0

m r 
0 

02

247 ,o



* 
4-

*0

b. -4

0~0

U2O

El ~ CI) >

~~0~~ cIr-
bjQO~

0) Ce ~ C
P-P A.

0-~ Q~(U

* 249



- -n

ob

0

250.

S• •

• • "0

250
0



00
CLU

CL-

044)

L -a .2

o = 0.Co>

400

251



0

4-
0

4)

Cý4)

> 0 --

252-



hL~ I-*4

WD ananiomme mm, w

Co 1 31 r -o

B 0

341.PEEEE1 00

oI G OI 401 -WI IMD411

I 0

bU i r, I'

a))

I 0

---m m- Imwmmm

I253



C c-
-4-

j))

cl4)

+Q

0 '4-

P04 
0

412)

Q)

LO -e

IN,

P.4-

-S -

254I



~C --. A- E.0 0

• I-

*r

, c-)U)01.

Sm ) U) IL(

ML

00--

0

IA 5

CD >9

255C



0

.0 I -00

C -

0 0 /a"--

oc

0~ 0 Ul

I= . o*
8 > <

c a

OnE .. 2

- 0 E

cis 0
25. 0 0

....... U' CL cor-CL a i

.0C i0 C ) E 0E

0

CL a-

E
0

Q

256



C- b-

Q) A

bibO
ce)

ct~

heQ

*9 C..

__ 4-D

25



. --

b-0

00

bo 

0

0 
CC

0-4

0 Ve

0e ce ce-

( 0 ~_ 

#

.10) -E
0) 0) (1

-~ ~ 25-



00

Cd L)

0w

E-M-

* 259



-�

S.

S

3

Q

0

o 0
* -
-4EE� -

4-;0

Q S
C) I-S C)

V..) C)
-4

* 0
CI) o .-

4-;
ce -�

�

C1 -�

-4 0 - 0
-4-; C) - 0 C)

-� C) � �J2
-

4- -S o -H 4- _
�4-4 Q) C)

C) -�

0 - �-; C)
p-S .- C) _C) .-�-

a.) "- - U) -

-� S U
-� 0 C) -

0 -� U)
0 1-4 H __

- � -4�; o
C/2

� 4-;� -s -. -

-� C) - - - 2
- -S *� C) - S.

�0 U) �'-� �

C12 C) � -� 0 -

o
F- 0 0

C) 0 0 0
0 ci�I-

w

S
0 5Q

260 S



I --1

ci:

E 0 -~- -
Oa~

* '- -~261_



C.NU

CIO.

090

AS E

I-

a.. 0

~EE4 262



0

eQ

CZ)

CC)

4m'4-

V)

cnd

2 Al



C/2

0 I0

co

Q).

-Z

W x

E00

o .l

EE
h&.

co 7j0a '. .

al

264*



0O0-

co

4* C)

* 4-D

-4D 04-

L) C
0 >

*265



DOO

0-4-

Q C) Co
00

)) _ - )

cn) C) - d c

0 - N

Ci2~c >4 Q
bZ

4-Ze~
~c

cz
1-4 c ) ) 2

o ~ a)*~~ct

0)U

266



00

C'OO

0 C0

-t U-

0

x-;-

+ ~ ~ ~ ~ -f . =-

Al ýV co v

0 -&-l. -4-

m)) C C*-4 N l

*0CI) CI Cl)Cl

0 60 Ct2 0
cn~~ -ncnc

*267



94m

cc

c~ ce

I I

0i 0 ý H
L))

C) C) Co
o C..) s

- CE

~268



PM4)

o P04

CC

-4-D

0)

4-'q ) cz- ci~fC

- ~ 269



W4

00

b.0
cje

b.0
o 0e

0 0
-4-D 4

-4d r-4

0 70

-e 0

5-4 '-

Q4 D

270



*u

Q-qj

0.

0.)
*=

V-4

0) ~Cu

271



00

0)0

- q)
0* ~ 0 x

CU cu c

v-q)
0P .b.C 4/

00
u-

04)

OV 0 P

!: -0

.6. .9.4 U

0 .6.0

WOO Cu

CIO C) cu

us Cu

oy <

272



Ow)

u 0
S"a)

-,=U-

"0

0 a) 0•.

0 M W .. t• •• : • .
•~~~~t W• •o .-.

0 t

*o.••A A A A> .AAA

273

oJ: ,, ,, =



00

cui

E '90

UU
U.-e(U

027



ri))

o
4-

* =-

M U) U
C:u

CU)

E..E

27



0

_ 0

00
E aN

0 JU

FRI)

276



6

0)

~~0

•CL

EC

. C.

0

o 0)

U) a

00
00

277



Sr- 1 j "
SI•,I I I•+.+ I i•• " --+ i*+:• "

•• °-__+°++ilI II i - "

°_ + + +If "
S++'+ +

"•3 z.' ,+ y _, ' 5- "
t,

© .+ "
-+ <-o + -I++-
+, -

278



E
10

EE

C.) *75

* C.)

C.)L

C.)CL

0a -cc -*c

0

C279



00

CDC

V) CL)

E-~~ 0y*, Cl co.--- 0
.60.

280



0.4

S• • rPUT,--- o

C;.-,

to
• - F•EC--.

•,0 oOOOO0oooo

w 000 0 01

C) CX 9L V-

-5. : z * Yuas s9oed e0e0

2810

so w

28



00

P-4

uC

L) M- f0-

0 cc

10 V--" -W

-o. U

~ 4 ru o

282



S '~0

w. o 0.4

0 Cu,0

rig%.6

z rTj 0
W 0 :- -.0I

V-4" O 00

w V-4 w 1.4 ' C)

OVA~

Pz
Op" Z Oh i

28



0

C,

Eu

I
1.4

OJ

U

0 -

C,

C,

eu A .. 4......�m.- +
'.4
Ca II C,

0 C,

_ 
0

Ca A

-� w
Ca

C,

U 'U

-. cl� -� 0
��� _

Eu II
C)

U) I - C,

0
0 C, 

S

j U -

- �

�C, !-1 Eu
EU C,

CJEU
I Up�

(U
U)

0
0�

284 0



00

*o
00

"* .0 - -00

0~ U.

O CIO N ..

• 'o' • 0 •

00

,• •,,,;cu "t5

e0

* 85

cp~

PI 0) 00 wT .IHI
.0.

285



00

0 0

0 Q

00
~J p~ >

U) CIO

U)x

00

28



0

0

9Z

"~~ c

287

'- - I _94

. a•

I if•BOA

, mml • ii

0 D

0 ) '

08



CO ;

N

1 04

Ycc

f

C',

________c 0

'UI

0. C1

28



U!N

* 2 - AI
SR

IV CO)SL

*; C
c(

289



040

CD 0~f~v 0

ci290



W-4-

CJ)
. -4

CCI
w~

0Q0 
*_

4.0)

Q) PU O

00

'.. :16"IZ 16.0 o

29



00

00

>-% 0

0W
0

co

0 PC0

oo
o(

4-4

o0

4)-
>)

0)292



0%04~II
. . ..... ..... DON

to 04 -3

0~ce CCY.C 14,
Go=0 G hQ0% CIO

CC

04 0. Cs

16m.o 0 044

4-4
~~0 0 %)0

......... slum* E 0%Y ~

oh.. oco0
co 02

0 _IM

Ne-0om > 0%
msLL ED.. 0 INNE

0 0.
OMMON o .2 c

........ 293



.. .. ...... _ _ _ ,. .

a* 0

~ \' i

C).

hmc

...... 0 )
Pat

-O *AW~ G)

* ...... ..

Co - COO

* 00-0 00

-- E
0 goo- MOWN

a) 00
oo E

MO-N

00

294



SIMON

CL 04mi

000

* - 0
...... . ... 0 .. ....

hu.........

-~-5

0 0-0

0.

Ugoo GII I u 0
....... ..

CDd
LMbm

295



CLd

00 E

4))
() Re-

memo

a) ) 4) 4

0 0 0a su

-) 4) 00 4

... .. ..

- a296



0 "M "Ks

00

00
Om

-kid-

C3 ~ *
* -i

ci

cnt

.... ......

29



0I

CL"

b 0

0 C3
0 00 Mo 0

E ~ 4 0*: .Ž

a) 3 .Cl. E~0)
..... ) . V.0

0. 013 w j

now- c3 0-a

000
0 ~~0 C3V ~

a) .cj 0

ou o~ D~j 04)
4) 0

h.MemoV0. 00

00
Zt 40

....... 298



Go CD

01404.0 %
cn Fo

0)%
ca0

0 05 a
CO F

0 ~ > * 00 I020
1k ..%NC.

- W .0%

0) co 0 C00

aa)
000

O 0 ~~C-

0 0 00 .

2

299



iC~i

o~C32

7C) (-

Ec' -4L E~ 00
-'ci

'I-4-

C/
16mm gacn 7.Cl)

0mm co0 n

a)-40
c:0 300



4C4I
joo,

0 a))

U)Ico > on 4I
a) - 0

2n a0c) +.- nnw

cn 0 >~- -04-c

0 a0

7C) 
(1 

a1

7C 
C/)C' I)-

C0a) 0 ci-0 ED
=L2 a)ci 0 0_
(LU 00 +

0 04

30 1)



........ .......... ..... ......
..... ..

Ud t~qj

0)0

00



U)) 4)

"ww
XN. C l

4) bo
~U) 0 0

E 0 E3 00)
0 0NE 0om MEE

0 ban MEWS
4) 4

xi) 0 -)~ M
>UEI a- U)-)4) * w u C0 . a-

_ _ 0jU ~0
4) ... - om

W 0
000 .) 0 O)~

_ MoU C *

a-~
- 0-0

o.3 0 0 - mm 0'--
0 0200

0 00 slmm
00 CL~ 00

00) 0 E5- E0 0~
00 i--ccq-.n0DO

.. 0 0 cmi

303



...~ . ...

10

-0

sC0m 0S

* o0- 00

000
0 0V

.... ..... 0 0
0t

CE
U- 000

00 0L

Eo 0).
0 '.0)

C) a0 -&-04 -C

4) ... 0

0. . ...........

304



4)0

4) P)
....... 0.

....... ....E .. ....

(D~

E0
E

(0 
)(..........

Jim% Lz.......... 'Ir

E o~. 0~ 0C0(j)

E75E

0 0Jc 0.

305



C-

uiI

LL Ic,,0 <1 0
0 IM

zoc
0 cc0 No

ww DCL

C,,D

Win _ _ _ _ _ _ _ 0

C-C- E
0 0

-- 2

00

0 c
ca0

30



CL 0

NMOW

(U))

13 U- '

* -

*'- 0

0 307



0 V- 0

o Eo

<00 0 .2

(H) 0.

C~0 0 0 c. C C

o -m

CC o~~
O0~ C 0

*0..*?0 um 0 u-C
0 cm

-a 4)G r 00
0 W40 (H) 0E ( 0 *rg

CL J0 0 0

.gmw.

308



E
a, I

E

a.0

w 0

0w00
z - C. II L

ClC

3099



z
w

z E
E

(ml) Il

0.0

00J U

-h x

CbCO
Z LI-

CL 0

zCw

310



40
CM

mom

000

00 a)

ro% 0

co C

%%00;

0) 0 t B.........0.

. . . . . . . . . . . . .

311,



. . . . . . . . . . . . . . . . . :.::.:~..................:.:

40

£0 >=

.o ....... 4b

>0c0 0%-0 LU

CLO 008W

00

LC4E. 0
oLU op-5 0- 00'

0000 4-) 0 0-8c.
V~~00 4)~0~

CO% *0 0 c-c.. O
0.-rn C LSc

(0*L. tD 0

E0% 0

O20 0o E0
o~m> CE-~ co 0

cn 0

5L@ ..

0 o c
0% ab312



'.'X X.

40

004

CC

...... lo wn.

a . .... C.0

00

CUC
0I CQ) Cm

CCL

0 00alm.

X02.
mo-m _ ~ m 4.- U-M

00mm 00m 0 0 0

313



0 0

00
CLC

75.

- 0T

0

00

00

0) V

Z .L

CL co
20~

0

0 cc

< 0

314



CL
COl CL.

'I))

0

I.l C/ a

-Z

Z0

00

0 E

E
0z

a0

w
0

315



go.'

CM'

00

00

I II

Oco U)(J

.... . C ... O

x0 xb Z 0

0 4)

0 0
LU316



(U) In

*04) E 40)
.... 0....

.0)

* 0

002
0) 0

*n MO C 0
..... 0...2 > -

.....* 0 %

0 c 0

0 up- 00

-. 0 00

mcn

317



4)I C.mL 40

II) 1600 1 3 CMO4n _1 0 8t

00 0) 0.
4). > alum0 o

0.. . . ... ... 0 0 )
00 0 4) c

0).- 0

0- 0 00 E) .70

0 00 E.-

00MM NUEmC 0 20 SEM
00

U) 0 0 06... c

o.2 00IMMMhm0

4)20
amp E - 0  0 0

0IE E, 0 ) CL
OOM

BE 0 Q . SEWER1..
C.B- SIMON0 0 0. m

slin 0 0
"* 0 0 0) 9-*o

00

318



,..,l,,....

Realtime OS's Which Span Wide Ranges Of Applicability
Require Certain Attributes To Be Highly Scaleable

03 Many realtime users need and want a single oS archi-
An Introduction To tecture whose instances

* Scaleable Realtime Operating System Technology * have a wide span of applicability

* from non-realtime

* to centralized tactical realtime subsystems

I to decentralized mission-critical systems
* with consistent

a interfaces
E. Douglas Jensen a functional components

Tecnica meaier a development tools
ReefMw. Crqw• er "ms

Q Such an os architecture must be highly scaleable with
respect to a number of its attributes-

i Voie: (+1) 50 403 1201 most importantly including
O--oe Fax (÷0)506 493 5011 * functionality

* performance

* timeliness

* predictability

* decentralization
-re ,,*,-* fault tolerance

because it is not cost-effective, or even possible, to
co. ,u• •m • • build a one-size-fits-all os for that wide span

I- - ,, , -. . . . . . . . . . . . . . . . . . . . . . . . . ... • . . . ... .. ,v ,- -,-,-,------,

No One's Current Realtime OS Is Very Scaieable An OS Architecture Can Be Scaleable
In Many Different Respects

0 No ones current realtime Os architecture or products
are more than just modestly scaleable 0 Such an os architecture must be highly scaleable with

* each specific os is suitable only for some relatively respect to a number of its attributes-
small range in the realtime application spectrum most importantly including

* where the present state of the art is typified by

"* DEC OSP-i (and its competitive realtime UNIX * performance
counterparts) * timeliness

intended for full-function, centralized, low per-
formance, low timeliness, low predictability, low * predictability

* fault tolerance, realtime systems * decentralization

"* DECelx (and its competitive realtime executive * fault tolerance
counterparts)

intended for reduced functionality (embedded), 0 Understanding the range and thus the scaleability of
centralized, high performance, moderate timeli- each of these attributes necessitates
ness, moderate predictability, low fault toler- * an improved understanding of the attributes
ance, realtime systems themselves

Sand thus the ability to think and communicate
more clearly about them

than is normally done

O To this end, we must

* clairfy some extant terminology

* add some new terminology

- --------- -9

319



OS Functionality Is Scaleable To The Extent That An Example Of Highly Scaleeble OS Functionality
It Can Be Changed Coherently Over The Spectrum Is The Use Of A Microkernel-Based OS

"0 Os-particularly realtime os--functionality ranges 0 A microkernel can be the basis of an os architecture
from with high functional scaleability

* none--some realtime systems have no os at allO" to simpleebede realtime subsystems haveno0ath 0 A microkernel can support (normally statically)"* to simple embedded realtime subsystems with

minimal os (executive) functionality * different functional 'servers* as needed

"* to complex realtime systems with extensive os 0 Ci--e.g., disidess executive, reduced functional-
functionality ity OS, full UNIX

. system software-e.g., networking, data man-
"O An OS architecture is functionally scaleable to the ex- agement

tent that its instantiations' a application software 0
" functionality can be increased and decreased- * different API's ("personalities)--even at the same

e.g., to match the requirements of time

"* the applications * direct use of the native kernel interface

"* trade-offs for other attributes
"* functional interfaces increase and decrease coher- L A microkernel (like any kernel) can be designed to per-

ently (i.e., superset and subset) with the function- mit system or application software which has been de-

ality veloped in user space

"* code base increases and decreases, instead of hav- to be executed in the kernel address space
ing to be replaced, with the functionality * this improves performance of time-critical code

* without the higher costs of developing kernel code
"O Functional scaleability may be static (at configuration (althoug ths ishereti o some kernel cod-

time) or dynamic (at execution time) (although this is heretical to some microkernel pur-
ists--at least outside of the realtime field)

O Functional scaleability is particularly important be- 
O

cause scaleability of other os attributes depends on it

sa .*l M I.,M

An Example Of Highly Scaleable OS Functionality An OS Architecture Can Be Scaleable
Is The Use Of Policy/Mechanism Separation In Many Different Respects

O The separation of resource management 0 Such an 0s architecture must be highly scaleable with

"* mechanisms respect to a number of its attributes-

"* standard application-neutral building blocks most importantly including

" e.g., in the kernel * functionality

"* policies

"a application-specific algorithms * timeliness

"* e.g., in clients of the kernel * predictability

is an effective technique for achieving a high degree of * decentralization

functional scaleability * fault tolerance

o For example, policies can be separated from mecha-
nisms for

"* processor scheduling

"* transactional data management--correctness,
concurrency control, permanence

"* secondary storage--consistency, recovery, inter-
face semantics (e.g., objects, files)

" virtual memory-paging

O Policies may be selected dynamically (i.e., at execution
time) or statically (i.e., prior to execution time)

O This is essentially the dual of the more widely used
principle of information hiding

320



-i
Realtime OS Performance Is Commonly Measured By These Metrics, High Performance Is 10-100 ýLSec
In Terms Of The Magnitudes Of Response Times

0l By these metrics, using contemporary processor
o Commercial realtime Os suppliers and users common- speeds

ly consider performance in terms of the magnitude of * "high* realtime performance is typically regarded
the time to initiate a computation which is to be on the order of

"* newly released-the metric is "interrupt response w io microseconds for limited-functionalty execu-
time' tives

(preemptive scheduling is the norm) a loo microseconds for full-functionality os's
"* already released-the metric is the "context * low" realtime performance is typically regarded

switch time" subset of interrupt response time to be on the order of looo microseconds and more
(regardless of whether scheduling is

"* preemptive-the usual case

"* or non-preemptive)

E Performance as interrupt response time presumes the
fact that most realtime os's are globally asynchronous
in the sense of being event-driven;

* a minority of Os's seek determinism by being globally
synchronous in the sense of being time-driven,

and thus don't have interrupts

-------- ---------

Realtime OS Performance Is Best Measured InTerms Of A Realtime Computation Has A Time Constraint
The Magnitudes Of Computation Completion Times

0 We define a realtime computation to be a segment of a0 The performance of realtime os's is more usefully computational entity (such a thread, task, or process)
measured in terms of subject to a time constraint

"* the end
"* rather than one of the means: E0 A time constraint is the relationship between

the magnitude of the computation c times * when a realtime computation completes execution
(such as deadlines) * the temporal merit of that computation
which can be attained with given hardware e.g., in the classical deadline case

El This is the performance metric that deterministic os's * completing before the deadline time is better

use- * completing after the deadline time is worse

and globally synchronous ones must use (since they 0 A time constraint is manifest in the computation pro-
have no interrupts) gram as a demarcated region of code whose execution

completion time is subject to the time constraint-

e.g., the computation must complete execution of the
region before the deadline time arrives

BEGIN TC (DLz30 MS)

END TC

otherwise it must suffer an exception condition

"........... . ...

32].



- I, n-IS 0 "

The Magnitudes Of Completion Time Constraints Higher Performance Of Means Is Usually
Are Not Specified For The Majority Of OS's Necessary But Not Sufficient For That Of Ends

"o The performance of realtime os's in terms of the mag- 0 Higher performance in the sense of interrupt response
nitude of the computation completion time constraints time is
is usually unspecified * necessary (in the usual asynchronous cases)
because computation completion time constraints are * but not sufficient

"* not yet supported directly by most commercial oS
products, which deal instead with for higher performance in the sense of computation

"* starting computations as fast as possible completion times

"* 'priorities'--whose semantics are user-defined 0 An effective technique for improving performance in
"* left to the users to satisfy by assigning and manip- the sense of interrupt response time is kernel pre-

ulating priorities and resources emptability

"o This is due to 0 A key factor in performance in the sense of computa-
"* the historical context of realtime computing tion completion times

"• the paucity ofprocessing power and memory-- is how resource dependencies and conflicts among
mathe paucity ofnproessithe poer andc ory- computations are resolved--e.g., by the schedulermade direct control by the user necessary

"* the simplicity of low-level sampled-data central-
ized subsystems-
made direct control by the user possible

"* user and vendor habituation despite evolutionary
changes in both aspects of that context

o However, computation completion time constraints in
the form of deadlines--e.g., priority ceiling protocols
for rate-monotonic schedulin,-have now appeared in
POSIX lO0.4B

OS Performance Is Scaleable To The Extent That Functional ScaleabilityAffects PerformanceScaleability
It Can Be Changed At Lower Functional Granularity

"o Some kinds and degrees of performance scaleability
Q A OS architecture's performance is scaleable to the ex- are more advantageous

tent that its instantiations' performance if they are achieved without affecting functional inter-
"* can be increased and decreased in magnitude- faces

e.g., to match the requirements of
"* the applications 0 Performance scaleability is generally facilitated by

"* trade-offs for other os attributes greater functional scaleability--e g.,

" at lower levels of functional granularity---e.g., of * higher realtime performance (in any sense) is eas-

the ier to achieve in os's having less

"* individual OS or application computations w functionality in general D
"• vs. os functions or services w of certain functionality in particular

"• vs. the os as a whole * realtime performance is generally greatly affected
by resource management policies-e.g.,

* scheduling

* concurrency control and synchronization
a virtual and physical storage management •

in any given application context

"O Performance may be scaled

"* statically--e.g., configuring a different rile system

"* dynamically--e.g.,

* turning preemption on/off •
* selecting a different scheduling algorithm

322



11 -
Higher Performance Does Not Necessarily Imply An OS Architecture Can Be Scaleable
Meeting All Lower Performance Requirements In Many Different Respects

El Providing higher performance in the sense of shorter U Such an Os architecture must be highly scaleable with
interrupt response time respect to a number of its attributes-

* also meets lower performance requirements most importantly including

* which implies performance scaleability means * functionality
only the ability to scale up to higher performance * performance

El But providing higher performance in the sense of *
shorter computation completion times does not neces- * predictability
sarly imply meeting lower performance requirements * decentralization

* e.g., a particular realtime scheduling algorithm * fault tolerance
may provide acceptable completion times

"* for a set of computations whose time constraint
magnitudes are relatively

o short
o uniform

(and thus constitute a a higher performance re-
quirement)

"* but not for a set of computations whose time
constraint magnitudes are widely varied from
short to long

(which constitutes a lower performance require-
ment)

* this demonstrates that performance scaleabiity
in general means both up and down-

which calls for scaleable scheduling policies

.m,-.nm M i 4J. os,. s - -wdDamWm.m 1 ,4 Wm~t N

Timeliness Is The Basis For Realtime Scheduling A Timeliness Framework Is Comprised Of Three Parts

"C) We consider the timeliness-i.e., temporal merit-of Q) Each realtime computation has a time constraint-
computations to be the principle basis for i.e., a relationship between

* specifying * when the computation completes execution

* scheduling * the resulting temporal merit-timeliness-of that

* evaluating computation

computation completion times (e.g., for the classsical deadline time constraint,
lateness = completion time - deadline)

"C) We define timeliness with a framework consisting of
three relationships (e.g., functions) 0) A collective temporal merit relationship defines

* the collective timeliness of a set of computations
* in terms of the individual timeliness of all its con-

stituent computations

(e.g., the number of deadlines met-i.e., with negative
lateness)

[C A collective temporal acceptability relationship defines

* the acceptability-in an application-specific met-
ric

* of the completion times-predicted or experi-
enced-for a set of computations

expressed in terms of their individual or collective
timeliness

* for specified system and application states

(e.g., acceptable means always meeting all deadlines)

323



Timeliness For Classical Deadline Time Constraints The Traditional Hard Deadline Case Allows Only For
Is In Teoms Of Tardiness Binary Timeliness And Acceptability

"o The classical deadline time constraint (i.e., in schedul- E The traditional realtime computing interpretation of
ing theory) employs "hard* deadlines implies restrictions of timeliness to

"* lateness = completion time - deadline * a binary special case of the deadline time con- S
"* or tardiness = positive lateness straint--timely and untimely

as its individual measure of timeliness s tIme deadle
run imen

release time deadline
run time 01 - timely . untimely

negatve- lateness-- -positive (leidiness) * a binary collective timeliness relationship 0
a untimely: the occurrence of at least one tardy

completion
"o The collective timeliness relationship of a set of com-

putations having classical deadline time constraints is v timely: otherwise
most frequently chosen to be one of the following * a binary measure of collective temporal accept-

"* the occurrence or not of at least one tardy (positive ability
lateness) completion s acceptable: no occurrence of tardy completions

"* the number of tardy completions (unanimous optimum) under any conditions

"* the mean lateness n unacceptable: the occurrence of at least one tar-
dy completion under any conditions

"O Classical deadline-based scheduling theory often im- where the semantics of "unacceptable" are specific
plicitly presumes that to the computation and application-e.g.,
collective temporal acceptability is equivalent to col- n non-productive
lective timeliness w counter-productive

in some way

Often Time Constraints Are Not Binary Often Collective Timeliness Is Not Binary

o Often it is very useful or necessary to have softer-i.e., U Softer time constraints necessitate correspondingly
non-binary--time constraints softer7-i.e., non-binary--collective timeliness rela-

tionships

"O A common example of such a softer time constraint: t

if a particular computation cannot be completed at a 0 Using the previous time constraint example,
time of optimal merit-i.e., before its "predeadline" the collective timeliness relationship could be one

"* completing it a little 'tardy" has reduced merit-- which (as a scheduling criterion) increases the num-but is better than not completing it at all ber of completions in the optimal region-e.g.,

"* however, completing it actually tardy (after its * the sum (or mean) of
deadline) has negative merit-i.e., is worse than * weighted lateness = (completion time - deadline) 5
not completing it at all + k (completion time - predeadline)

release time *prdmeline"' dedirne
Srun m. 0 Some softer collective timeliness relationships are

routinely handled in terms of lateness with classical
opbrnml suboptimal negative scheduling theory: n while others necessitate more expressive time con-

straint relationships
"C Some softer time constraints are routinely handled in

terms of lateness with scheduling theory- 0 Realtime computing practice tends to express and
but the linearity of lateness greatly limits the inter- handle softer collective timeliness less effectively-
pretation of merit (e.g., excludes this example) not on a time constraint basis at all, but instead in dis-

parate, ad hoc, imprecise ways
"0 Realtime computing practice tends to express and

handle softer time constraints even less effectively-
not on a time con 4raint basis at all, but instead in dis-
parate, ad hoc, imprecise ways

............ 1 - ...... .. .

324



Often Temporal Acceptability Is Not Binary Timeliness Is Scaleable To The Extent That
The Choice Of The Three Relationships Is Unrestricted

"[ Softer collective timeliness necessitates correspond-
ingly "softer"--i.e., non-binary--temporal acceptabili- 0 The timeliness of an os architecture is the degree to
ty relationships which it supports the timeliness of

* application

"O The degree of collective temporal acceptability might * a

be based on * its own

* collective timeliness alone-e.g., acceptable only computations

a only above one lower bound under certain cir- 0 The timeliness of an os architecture is scaleable to the
cumstances, and above a different lower boundL3Tetmlnsofa rcicueisclab oth

tnder ande circumstab es adiextent that its instantiations can accommodate
under other circumstances

* both individual and collective timeliness-e.g., ac- arbitrary (i.e., an unrestricted choice of) relationships

ceptable to the degree that for

"* individual time constraints• some
o total number of * collective timeliness

o or specific individual * temporal acceptability

computations

a are late by a certain amount

"* under certain conditions

"O Realtime computing practice tends to express and
handle softer temporal acceptability less effectively-

not on a time constraint basis at all, but instead in dis-
parate, ad hoc, imprecise ways

lem-J •I t.vudIm 193* S -8 mrn -... SateJ r • 14i S3, , IWN' 3 M

Scaleabie Time Constraint Relationships Are The Traditional Realtime Computing Interpretation
Temporal Merit As A Function Of Completion Time Of A Deadline Is A Downward Step Function

"o The time constraint relationship can be made arbi- 0 The traditional realtime computing interpretation of a
trary by thinking explicitly of deadline, when viewed as a time constraint function,

individual temporal merit being any function f of the is

computation's completion time t 1 1

UIkt: fot) 0 D
Ca. impe, Conw'*6wbw Compns CM1 tm

WC. tWm•nCWVe&nhW t * a binary-valued, downward step function

"[3 The classical deadline function's merit of lateness is w completing the computation anytime between
then csic deadle f its release (x = o) and deadline times is uniform-
then depicted as ly timely

a and otherwise is uniformly untimely

* w o"* the smaller of the two binary merit values may be

JDosdu rD0 M o: zero merit is attained for completing the coi-

" O T putation after its deadline
* -- : a large merit penalty is incurred for coin-

"* a line pleting the computation after its deadline

"* with slope + 1

* having a range off - deadline, +eo)

"* crossing the x axis at the deadline time (becoming
tardiness)

-- - - - -

325



L___ __ _ _ _ _ _ _ _ _

In Real Systems Very Often The Time Constraint Time Constraints Are Scaisable To The Extent That
Is Neither Unear Nor Binary They Are Defined By Arbitrary Functions

U Both the classical and traditional realtime computing U Time constraints are scaleable to the extent that they

interpretations of a deadline are often poor approxi- * are arbitrary functions
mations to actual realtime constraints * with arbitrary merit ranges

U There are many cases in realtime applications where U The merit measure is application-specific and defined

"* there is some diminished merit attained for com- system-wide
pleting the computation within an allowable tardi-
ness period U The computation completion time axis is the one the

"* the merit is not constant prior to the "deadline" scheduler uses-it may be

"* the penalty is not constant after the *deadline" * physical

"* the merit measure and range are application-spe- s absolute ("calendar/wall clock') time
cific a relative to (since) some past event

1 k *logical-a number which monotonically increases,
but not necessarily at regular intervals

0o U The origin of the time constraint function axes is the
cmiu4ss cofbfounTime Cdon isflC. Thfm, current time (value of the system clock)

It Q Time constr~int functions are

Awl • 0 derived by the programmers directly from the re-
w = u• quirements and behavior of the realtime computa-

0 k tion
CO. " C.0fifMfeih CCIAi Comortihn (usually an application activity)

U Deadlines are not a general mechanism for expressing * subject to a system-wide erg~neering process •

scaleable realtime time constraints (just as are assignments of classical priorities)

i .. i it SINs ,.•-•..a. • ll.Nllb~ I'Nts

-- --- ------ ------

Collective Timeliness Is The Scheduling Criterion Collective Timeliness is Scaleqble To The Extent That
it is Defined By Arbitrary Functions

U A realtime scheduler considers all released time con-
straints between the current time and its horizon U The collective timeliness relationship can be made ar-

bitrary by thinking explicitly of

2 collective timeliness being any function tc of the indi-
......• viduals' timeliness

I _ - Q The common classical collective timeliness func-
C rpt nom •n~h tion*--e.g.,

* the number of tardy completions

U It assigns the estimated execution completion times- * the mean lateness
and consequently the can readily be generalized in terms of arbitrary indi-

"* initiation times vidual merit measures

"f partial ordering U The collective timeliness function fc for traditional re-

for those computations altime computing's interpretation of hard deadline
time constraints (assuming their usual range of W0,11)

U It employs an algorithm chosen to optimize the collec- is
tive timeliness--i.e., scheduling--criterion fc*: the product of the individual merits

(perhaps taking into account other factors such as de-
pendencies)

U In general, collective timeliness is not necessarily
unanimously optimum with respect to the individual
computations' timeliness--

the traditional 'hard* realtime computing criterion of
all computations meeting their deadlines is a popular
exception

. ...... ~ 4 S N3l2 6

326



Temporal Acceptability Is Scaleable To The Extent That Highly Scaleable Timeliness Is Facilitated By
It Is Defined By Arbitrary Functions Scheduler Policy/Mschanism Separation

"Q The collective temporal acceptability relationship can C Highly scaleable timeliness is facilitated by a form of
be made arbitrary by thinking explicitly of functional scaleability-scheduler voli'e/mechanism

collective temporal a _ejA0 L:tity b,±int6 a- functiou fA separation

of because the scheduling policy

"* the individuals' and collective timeliness * employs the time constraint functions

"* other parameters, such as system state * to optimize the collective timeliness function

* so as to meet the collective temporal acceptability
"O The collective temporal acceptability function &A for function criterion

classical deadline time constraints is often null-i.e.,

fA(U. .).. f. .) 03 The extent to which timeliness is achieved dynamical-
ly-i.e.,

"o The collective temporal acceptability function &A for * by the Os at execution time
traditional realtime computing's interpretation of
hard deadline time constraints is * rather than by the programmers at system config-

uration time

fA(" fi *( . ) affects the impact of scaleable timeliness on the sched-

uler

An OS Architecture Can Be Scaleable Perfect Timeliness Is An Ideal But Generally Unrealistic
In Many Different Respects

El The ideal case of perfect collective temporal merit
O Such an Os architecture must be highly scaleable with * every computation always completing execution

respect to a number of its attributes- * at an optimum time

most importantly including is unrealistic in general

"* functionality

"* performance 0 Even though the traditional "hard* realtime cases are

"* timeliness intended--and commonly imagined--to achieve this
ideal,

* decentralization * physical laws (especially in decentralized systems)
* the intrinsic nature of the applications (especially

* fault tolerance at mission management levels)

generally make it

"* non-cost-effective

"* or even impossi._!e

Q Thus, the timeliness (temporal merit) of computations
and systems is not necessarily assured and known

"* accurately

"* in advance
"* or even at all

""- -. .. --- ,------,--,-.....

327



Predictability Is The Extent That The Degree Of Predictability Depends On
TImeliness Can Be Estimated Acceptably Parameter Knowledge And Scheduler Behavior

"O We consider predictability to be the degree to which 0 The degree of predictability of a computation depends
timeliness can be estimated (in advance) acceptably on

* how well known are all parameter values of S
"O Predictability applies to any level of a system--e.g.,

* the computation--e.g.,
"* individual computations of an application or os 0 arrival time

"* sets of computations of an application or Os o execution duration

"* individual functions or services of an os . and its future execution environment--e.g.,
"* an os as a whole 0 resource dependencies on

"* a system as a whole o conflicts with
"other computations

b The usual practice is for the degree of predictability to * how well controlled is the time evolution of the
be processes which govern the computation's timeli-

"* specified prior to system execution time ness
"* attained at system design time a particularly the scheduler-
"* evaluated after system execution time which must be responsible for scheduling all

physical and logical resources, not just proces-
"0 But it is possible for the degree of predictability to be sor cycles, in systems needing high

"* specified 0 performance of computation completion

"* attained 0 timeliness

"* evaluated 0 predictability
a e.g., chaotic regimes are a significant risk in

dynamically (at execution time) highly decentralized schedulers, especially real-
time ones 0

TheDegroeOf Predictabilityls Established AccordingTo Determinism Is The Maximum Case Of Predictability
The Specific Interpretation Of "Acceptably"

0 Deterministic computation in the realtime context lit-
El The degree of predictability is then established ac- erally means that a computation's, or set of computa-

cording to the application-specific interpretation of tions', timeliness is known
"acceptably"- * absolutely

e.g., the estimate may be intended to be * in advance

"* extremely precise in certain instances-e.g., i.e.. there is nq uncertainty about anything which
"* for certain critical computations or services could affect its timeliness

"* under certain critical conditions (at least barring faults, and preferably within accept-
at the expense of being less so in the remainder able fault coverage premises)

"* versus being 0 A computation being deterministic does not imply

"* less that its timeliness

"* but equally * individually
precise in every instance * as a member of a set

is acceptable, only that it is known
(although the point of deterministic systems is for 0
them to be known to have acceptable collective timeli-
ness)

-i --- - --------- ------ a , -- - - - - -

328



Dtermnlnsm Can Only Be Approached In Practice Predictability Is Often Probabilistic

0 There are very few actual realtime applications and D When the parameters of a computation and its future
systems which (inherently or forcibly) meet this deter- execution environment are known in the form of ran-
minism criterion of absolute timeliness certainty dom variables,

so that their uncertainty is characterized by probabil-O Most are subject to some inevitable dynamic fluctua- ity distribution functions

tions and variabilities of

"* computation * the computatiorn's timeliness may be amenable to
stochastic analysis

"* communication * e.g., the probabilities of

timing, due to factors such as a execution completion at different times

* input data arrivals n corresponding temporal merit values

* resource dependencies and conflicts can be derived for certain situations

* overloads

* hardware and software exceptions 0 But, as with deterministic scheduling, many of the

(not to mention faults, errors, and failures outside the most interesting cases are

presumed coverage) * either known to be analytically intractable
* or still defy explicit solution

Q The contexts, and thus approaches, of stochastic
scheduling are predominately oriented toward non-re-
altime objectives, such as makespan or flowtime
(throughput measures)

* which are analytically and computationally easier
than stochastic scheduling to meet due times

* and for which there is greater application demand
than from the realtime community

Larger, More Decentralized Realtime Systems Predictability Is Most Commonly Expressed As
Are Generally Non-Stochastically Non-Deterministic A Least Upper Bound On Timeliness

EO The computation and execution context parameters of 0 Predictability may be expressed in a variety of ways-
many realtime systems, e.g.,

especially larger, more complex, more decentralized * an assured upper bound-the most common way
ones, (a lesser or least upper bound, since any system's

are often too asynchronous--i.e., timeliness could be said to be predictable by the

"* intermittent choice of one high enough)

"* irregular * or a probability distribution function of timeliness
values

* interdependent * or in terms of discontinuous rules which relate

to have known, or computationally tractable, proba- various execution contexts to
biity distribution functions estimated

o Thus, these realtime systems must be treated as non- a bounded
stochastically non-deterministic a or even specific

* for which the scheduling technology is still in its timeliness values--
infancy those contexts being ones which are most

* although non-realtime lely

"* algorithms * important

"* languages a or just readily relatable to timeliness estima-

"* models (e.g., Petri Nets) tions

commonly take advantage-for simplicity-of
making non-stochastically non-deterministic deci-
sions,

as do an increasing number of realtime algorithms

,r n n .... . ... ..... .. ... .

329



Predictability Estimates Can Be Made OS Predictability Is Traditionally Focused On
By A Variety Of Techniques Timeliness Of Initiating Computations

"o Predictability estimates may be made on the basis of Q The realtime context and resulting perspective that

"* formal analysis led commercial realtime os suppliers and users to tra-
" formulatnayi ditionally consider

" codeamination * performance of an os per se

" empirical eamiaton in terms of the time to initiate computations
* empirical measur'-ment * and acceptable timeliness of computation comple-

tions

"U Predictability evaluation

"* is usually performed by empirical measurement to be primarily an

"* but in extreme--e.g., asymmtotically determinis- w i priori

tic--cases 0 application programmer responsibility

"* is unnecessary also implies that predictability has been considered

"* because attainment of the specification is as- likewise

sured 0 Thus, Os predictability has been

(e.g., through formal synthesis) * specified

"* attained

"* evaluated

predominately

"* statically-as a design and implementation issue

"* for the os as a whole rather than for individual

"* functions or services

"* 0s or application computations

.i f .tieN--,.M •

..= ., -
OS Predictability Is Scaleable To The Extent That Very High Predictability Is Usually Attained

It Ranges From No Need To Determinism With Extraordinary Concepts and Techniques

"U The predictability of an 0s architecture is scaleable to L Ubiquitous approaches for attaining very high de-

the extent that its instantiations can accommodate grees of system and os predictability (asymmtotically

"* timeliness estimate acceptability ranging deterministic)

"a from no need for os-provided predictability of computation completion timeliness

o either no predictability is needed * are based on extraordinary concepts and tech-

0 or all needed predictability is the responsi- mnques--.g.,

bility of the 0s clients (e.g., application pro- a globally and statically synchronous
grammers) o computation

and any OS (un)predictability is irrelevant 0 i/o

"* to asymmtotically deterministic os-provided a certain formal design and validation methods
predictability, * that impose extremely high costs of many kinds,

under sufficiently certain conditions including intolerance to any forms of uncertainties
* at granularities ranging "U Some proponents of those concepts and techniques ar-"* from individual system and application compu- gue that they are

tations *

"a to individual Os functions or services * not only sufficient

"* to the whole Os * but also necessary

for such high degrees of predictability

"U This scaleable predictability may be

"* static-which is less scaleability U There is an interesting analogy between predictability
and security in this respect

"* dynamic-which is more scaleability

"U We neither quantify nor weight these factors here

330



Higher Predictability Does Not Necessarily Imply Scaleabi. Predictability Is About Uncertainties And
That All Lowe Predictability Needs Can Be Met Is Affected By Scaleable Timeliness And Functionality

03 These concepts and techniques for high predictability El Predictabilitv is about dealing with uncertainties, so
are special cases scaleability of predictability must accommodate

which do not scale down to * varied types and amounts of uncertainties
"* specifying, attaining, and evaluating * statically
"* specific or even non-specific a dynamically

lesser degrees of predictability * together with varied trade-offs among

O This* imle that high scaleability of predictability a predictability

** either must be achieved by new concept, and tech- aohratiue

niques which do scale well a and their costs

* or is inherently limited El High predictability of computation completion timeli-
ness

* depends primarily on the scheduler

* and thus the timeliness framework

so scaleability of predictability is strongly affected by
the scaleability of

"* timeliness

"* functionality (particularly policy/mechanism sep-
aration)

An OS Architecture Can Be Scaleable Physical Dispersal Of Processors Is Defined By A Ratio
In Many Different Respects Between State Change And Communication Rates

13 Such an os architecture must be highly scakable with 0 Any particular pair of processors in a system is physi -
*respect to a number of its attributes- cally dispersed to a degree defined in terms of the ratio

most importantly including between

"* functionality * the rate at which a processor can change state

"* performance * the rate at which processor state changes can be
" timeinesscommunicated between them

predctablity(not, as commonly thought, simply to the extent of
"*peitblt their a iparation)

*fault tolerance

- - - - - - - - --- -- --- -- -- - --- -- -- -u --. - - - - ---- - - --

331



The Magnitude Of This Ratio Is Hardware Dependent The State Change/Communication Ratio
Generally Is Dynamic Within Each Range

O This state change/comunication ratio is"* relatively small in uniform memory access multi- 1 This ratio is in general dynamically variable within
preielrsml each of the above four ranges--e.g., due to

" somewhat greater in non-uniform memory access * communication queuing in the i/o interconnect ar-

(NUmA) multiprocessors-- chitectures
Le, in which memory references take place (typi- * changes in virtual to physical memory mapping in
cally over a backplane bus) among the memory interconnect architectures

"* uniprocessors (with or without local memory)

"* uniform memory access multiprocessors (some-
times called "clusters" in this context)

"* global memory
"* much greater in multicomputers-processing ele-

ments (processor/memory pairs) which intercom-
municate by messages over
"* a shared backplane
"* serial bus/ring
"* private links (e.g., meshes)
(sometimes called NO Remote Memory Access--
NOSMA--architectures)

"* greatest in networks and "distributed systems"

Software Is Physically Decentralized To The Degree Physical Dispersal Has Various Fundamental Effects
That Processor Dispersal Is Significant To It Which Are Significant T:, C~centralized Software

o3 Software computations are physically decentralized to LI The significance of the processor state changelcomu-
the degree that nication ratio is manifest in the software's need to ex-

the state change/comunication ratio which defines the plicitly recognize and accommodate aspects of
physical dispersal of processors locality of references in space and time

"* is significant to * the binding of computations'
"* i.e., must be explicitly recognized and accommo- a code segments

dated by w current execution points
those computations themselves @ data

"o We regard this significance as qualitative and do not to pro io,)rs

quantify it * the
a identities

"O Physical centralization is one end point in the dimen-
sion of physical decentralization 9 physical locations

of the processors
"o (Software is also logwally decentralized to different * the 0

degrees, which we will not address here) Magnitudes

"* uniformity

"* variability

of the interprocessor communication times
"* whether memory (in the case of multiproces-

sots)

"* or i/o (in the cases of multicomputers, networks,
and distributed systems)

332



Only Node-Local Computations Are Centralized In Multinode Computer Systems
Some Computations Span Multiple Nodes

0 The only computations that are centralized (i.e., to
which the processor state change/comunication ratio 0 In computer systems that have a multiplicity of nodes,
is insignificant) there must be some computations that

are those which are entirely local to a node * span multiple nodes-i.e., are trans-node

"* either a uniprocessor-i.e., one processor/memory C.P. ,. ,
pair

"* or multiple processors having negligible physical
dispersal-
i.e., a multiprocessor with only globally shared,

S uniform access time, memory

Node, Node, Node, Node,

* and thus are necessarily physically decentralized
to some degree

El The least decentralized that multinode computations

can be is on a NUMA multiprocessor

"* by definition

(i.e., differentiating it from a UMA multiprocessor,
which is single-node)

"* its state change/comunication ratio has unavoid-
ably lower bounded significance to all trans-node
computations--

e.g., on locality of code and data references in
space and time (and thus on performance at least)

-- -- --- -- --- -- -- ---------- --------

Computations At Different Levels Of A System An OS Is Decentralized To The Extent That
Are Generally Decentralized To Different Degrees All Its Computations Are

Q Computations exist at different levels of the system 0 A centralized kernel or os (or any other level in the

* from the applications system) is one which has only centralized computa-
tions and services--

* down to the os and kernel which implies that

* (and even the processor interconnect hardware
can be thought of as comprising computations) * its computations and services are confined entire-

ly to a single node

O The physical decentralization of computations can dif- * any accommodation or exploitation of physical dis-
fer at different levels of the system persal must be performed at one or more higher

(physical decentralization of the processor intercon- levels in the system

nect hardware is always maximum) U A kernel or an os (or any other level in the system) is
decentralized to the extent that

"* each of its computations and services

"* is decentralized

and thus trans-node

-.---------- "- ------ . . ....-- -- - - - * N i--,- --

333



A Decentralized OS Generally Is Not Suitable For An OS Intended For Lower Physical Dispersal
Lower Or Higher Physical Dispersal Than Intended Generally Will Not Function Correctly With Higher

I) A kernel or an Os (or any other level in the system) Q A kernel or os (or any other level in the system) in-

which is decentralized to any given degree tended for lower physical dispersal generally will not

will not necessarily be suitable for a different function correctly with higher physical dispersal,

"* lower due to its lack of capability for decentralization (ac-
commodating effects of the state change/comunication

"* higher ratio)-e.g.,

physical dispersal than it was intended for * a centralized os generally will not work for a NUMA
multiprocessor-

e.g., because its centralized virtual memory man-
agement cannot handle the non-locality of concur- 0
rent references among "clusters"

* an OS for a NUMA multiprocessor generally will not
work for a 'distributed* (NORMA) system-

e.g., because of the absence of coherent shared glo-
bal state which it depends on,
such as for intercomputation communication and
synchronization

An OS Intended For Higher Physical Dispersal Decentralization Is Scaleable To The Extent That
Generally Is Not Cost-Effective With Lower It Is Independent Of The Magnitude Of Dispersal

O A kernel or Os (or any other level in the system) in- Q The decentralization of a computation is scaleable to
tended for higher physical dispersal generally is not the extent that the
cost-effective with lower physical dispersal, * the significance to that computation of physical

due to the execution overhead of decentralization (ac- dispersal (the state change/comunication ratio)
commodating effects of the state change/comunication * is independent of the magnitude of the physical
ratio)--e.g., dispersal

"* any multiprocessor Os has unnecessary overhead
on a uniprocessor- U The decentralization of an
e.g., because of its locks * Os servive

"* a NUMA multiprocessor Os has even more unneces- * Os
sary overhead on a single-node machine- * or any other level in the system

e.g., because of its more complex virtual memorymanagement is scaleable to the extent that the decentralization of
maaeeteach or its copttosi clal

"* a 'distributed" os may have unnecessary overhead e is scaleable

on a 0 An os (or any other level in the system) which has
"* NUMA multiprocessor maximally acaleable decentralization is entirely inde-

"* single-node machine pendent of physical dispersal-

because of its facilities (e.g., for intercomputation i.e., can operate correctly on any
communication) to overcome the absence of coher- * single-node
ent shared global state * multinode

architecture 0

(cf. delay-insensitive logic)

--- -, m- - •-- --- -n .. ,--

334



* lmJ .r, -i ,

The Decentralization Of Computation. At Each Level One End Of The Multinode Architecture Spectrum
Is A Fundamental Multinode Architecture Decision Is Highly Physically Decentralized At Every Level

0 A fundamental multinode system architecture deci- U] One end of the multinode system architecture spec-

sion is the degree of physical decentralization trum reflects the processor dispersal up to the-thus

* * not just at each level of the system highly physically decentralized-application level(s)

* but also for the various computations at each level to achieve efficiency benefits from

"* the programming and execution structures of the
system being relatively congruent with that of the
application-e.g.,

m M-ary N-cube architectures

a and message-based os's

are a good match for the computational structure
of certain physical science applications

"* avoiding overhead incurred by virtualizing away
the the physical dispersal

0*-, ~lll mm il .l l 41S1N- - 1I.• I~ll~ N

--" -". --

High Decentralization At All Levels Of The System The Other End Of The Multinode Architecture Spectrum
Has Been Popular For Supercomputers And Realtime Is Highly Physically Centralized At Every Level

0 This end of the spectrum is historically-but dimin- 0 The other end of the multinode system architecture
ishingly-the choice for multinode spectrum has

* supercomputers * as many computations
* realtime computers * as physically centralized as possible

because the users of each have tended to
U The goal of this is to minimize the impact of physical

* trade off cost-effectiveness for maximum perfor- dispersal on software costs-e.g., by
mance

b staying closer to familiar centralized program-
be less concerned with ming techniques and tools
a legacy software m preserving legacy software
a costs of learning and tools for decentralization a being independent of the physical dispersal as-

pects of different multinode architectures

0 The approach is
"* to create a virtual system for the maximum num-ber of the higher levels

which is

* as centralized as possible
* given the processor physical dispersal

"* by being highly decentralized at
w the minimum number

a of the lowest level(s)

335



Lower Levels Can Create A Virtual NUMA System A Virtual NUMA Multiprocesaor Can Be Created
So That Higher Levels Can Be More Centralized By The Processor Interconnect Or Kernel/OS Levels

O Trans-node computations at higher levels can be more 0 The lowest system level which can create this virtual
physically centralized NUMA multiprocessor is the processor interconnect
if the trans-node computations at one or more levels hardware-

below it cf. the KSR-1, and numerous distributed shared newno-
"* create a virtual more centralized system ry research projects

"* by being highly physically decentralized-e.g.. * minimizes multinode impact on all software from
providing a high degree of node transparencyOS kernel up

* requires innovative, non-standard, expensive pro-

c u.ipen*, cpuftob iop cessor interconnect hardware

.= Virtualization assistance may be provided by the Os
kernel to simplify the interconnect hardware-

- - ----- cf. sot's rumored forthcoming multinode product, andLi•jnumerous other distributed shared memory research
I......-... - L ==- . .. projects

Single NUMA Multiprocenor El Given conventional processor interconnect hardware
that doesn't virtualize the nodes,

o The most centralized virtual machine possible in a

multinode system is a NUMA multiprocessor at all lev- the kernel and os are the lowest levels which can do so
els * cf. the OSF/RI version of Mach 3 and OSF-i (OSF-lJAD)

* virtualization cannot reduce the fixed (or lower that provides NUMA virtualization on Intel's NOR-
bounded) state change/comunication ratios MA Paragon hypercube

* these ratios have unavoidably lower bounded sig- * (not to be confused with the version of Mach 3 that
nificance to all trans-node computations- CMU modified to run on NUMA multiprocessors) 0
e.g., locality of reference in space and time

A Virtual NUMA Multiprocessor Is Often Desired For The Degree Of Decentralization Need Not Change
Extant OS And Application Layers Monotonically By System Level

E Presently, it is most frequently desired that multinode CI The degree to which computations are physically de-

systems have minimum impact on the extant centralized need not change monotonically by system

* OS level-

* as well as applications e.g., physical decentralization is commonly

* low at the Os level
O This implies that one or more levels of computation to allow the use of extant node Os's which were not

between the hardware and the applications must intended to perform trans-node management of
"* be highly decentralized resources other than for networking

"* and provide the desired degree of virtualization * high at an intermediate distributed execution en-
(e.g., a NUMA multiprocessor) vironment (e.g., DCE) level

to reduce the trans-node resource managemento Some of this virtualization may be provided by inter- obligations of the
mediate levels such as

m application programs above
"* a distributed execution environment (e.g., DCE) * node OS's below

"* an object-oriented execution environment (e.g., * moderate at the application software level
OMA-based)

w to reduce the trans-node resource management
El But such intermediate levels typically obligations (thus costs) of those programs

"* do not have direct access to kernel and os level re- a while retaining ability to sufficiently manage
sources and exploit the system's structure

"* only via conventional centralized os services,
which limits their degree of

"a decentralization

"* timeliness

336



There Are Needs To Bypass Virtualization An OS Architecture Can So Scaleable
In Multinodo Systems In Many Different Respects

0 The programmers at a physically centralized level oc- L Such an Os architecture must be highly scaleable with
* casionally need to respect to a number of its attributes-

"* bypass some virtualization most importantly including

"* and perhaps also employ some decentralized corn- * functionality
putation * performance

e.g., * timeliness

* when they desire to see or control some software/ * predictability
"larrdware binding for * .ive•n~ra'ization

0 " performance-due to node locality of execution
and data access

"* fault tolerance-by partitioning and replication

* in the case of certain service outages where

a application-specific recourse must be taken

a or the end-to-end argument applies

OS Fault Tolerance Is Scaleabi. To The Extent That stuff about how to have scaleable fault tolerance
P-wific Kinds And Degrees Can Be Provided

0
o Fi._t Aolerance is the extent to which a system

* * either exhibits a well-defined failure behavior
when elements fail

* or masks element failures (continues to provide
service) to its users

El In most applications, temporary errant behavior or

service unavailability is acceptable;

in many others--especially realtime ones

"* one or both kinds of fault tolerance are required

"* to various degrees

"* under various circumstances

O An os architecture's fault tolerance is scaleable to the
extent that its instantiations can exhibit the kind and
degree of fault tolerance desired for a particular

* system

* service

* computation

* circumstance

337



Rii-4a 0~.~m•Il

0-

338

i •n~imI ~ mI~mn I I I~ l f iial



Realtime Computing Arose In A Historical Context

"O Realtime computing as we think of it today arose in a
historical application and hardware context

which definitively shaped its perspective on techno-
Asynchronous Decentralized Resltime Computers logical goals and approaches

"o The most salient characteristics of that contexc -,

* relatively small, simple, centralized subsystems
for low-level sampled-data monitoring and con-

E. Douglas Jensen trol-e.g.,
a acquisitin and analysis 3fsignals, su-'ch as

Techrical Directo, Roaltime Computer Systems o process data
Digial Equipmort Corp o lab instrument readings

Email: jesonatielix.eont.dcconm o radarVoice: +1 S0M 493 1201Fax: +1 S50 493 511 a feedback control of sensors and actuators such

as
0 manufacturing and process equipment
0 testers and analyzers
o aircraft flight surfaces and weapons

* chronic insufficiency of hardware-especially pro-
cessing and memory-resources

due to restricted

a cost

* a size, weight, power

The Realtime Application And Hardware Context Asynchronous Decentralization
Is Expanding Dramatically In The 1990's Impacts The Nature Of Realtime Resource Management

o Both of these defining characteristics of the tradition- 0 Asynchronous Decentralized Realtime Computinu
al realtime context are now changing so much in de-
gree that they are changing in kind 0 A New Paradigm For Scaleable Realtime Computing

Q An increasing number of realtime computing applica-

tions are becoming

"* larger

"* more complex

* more decentralized

"* higher level (strategic)

* systems

0 Computer hardware, particularly microprocessor exe-
cution speed and memory size,

is growing, and dropping in cost, at an extremely fast
pace

O These expansions of the realtime application and
hardware context violate many of the premises under-
lying the conventional realtime computing mindset
and technology

Q A new perspective and new scaleable resource man-
agement technology--a new paradigm-is required
for this broadened realtime context

339



Application Pull And Technology Push Are Leading To Physical Dispersa Of Processors Is Defined By A Ratio
Increasing Physical And Logical Decentralization Between State Change And Communication Rates

0 Decentralized realtime computing is called for by an 0 Any particular pair of processors in a system is phys,-
application most frequently because cally dispersed to a degree defined in terms of the ratio

"* application resources-e.g., between

a factory or plant machinery * the rate at which a processor can change state

n combat platforms * the rate at which processor state changes can be
communicated between them

are inherently spacially dispersed (not, as commonly thought, simply to the extent of
"* survivability, in the sense of graceful degradation their separation)

functionality

"* is usually more cost-effective by replication and
partitioning

"* than attempting physically centralized func-
tionality which is infallible or ,,destructible

Q Decentralized realtime computing is implied by tech-
nology most frequently because

"* multiple smaller processors are now very often
more cost-effective than a single larger one

"* the high performance of current processors com-
pared to that of memory subsystems necessitates
multicomputers with message-passing over a
backplane bus

Q Decentralization may be physical or logical

_ _ _ _--------------_ _ -

The Magnitude Of This Ratio Is Hardware Dependent The State Change/Communication Ratio
Generally Is Dynamic Within Each Range

0 This state change/comunication ratio is

"* relatively small in uniform memory access multi- 0 This ratio is in general dynamically variable within
processors each of the above four ranges-e.g., due to

"* somewhat greater in non-uniform memory access * communication queuing in the i/o interconnect ar-
(NUMA) multiprocessors- chitectures

i.e, in which memory references take place (typi- * changes in virtual to physical memory mapping in
cally over a backplane bus) among the memory interconnect architectures

"* uniprocessors (with or without local memory)
"* uniform memory access multiprocessors (some-

times called "clusters" in this context)
"* global memory

"* much greater in multicomputers--processing ele-
ments (processor/memory pairs) which intercom-
municate by messages over
"* a shared backplane
"* serial bus/ring 0
"* private links (e.g., meshes)
(sometimes called NO Remote Memory Access--
NORMA--architectures)

"* greatest in networks and 'distributed systems"

. . .... ..... f u . r.. . . . . ...... ... .

340 0



Software Is Physically Decentralized To The Degree Physical Dispersal Has Various Fundamental Effects
That Processor Dispersal Is Significant To It Which Are Significant To Decentralized Software

"0 Software computations are physically decentralized to 0 The significance of the processor state change/cornu-
the degree that nication ratio is manifest in the software's need to ex-

the state change/comunication ratio which defines the plicitly recognize and accommodate aspects of

physical dispersal of processors locality of references in space and time

"* is significant to * the binding of computations'

"* i.e., must be explicitly recognized and accommo- M code segments
dated by a current execution points

those computations themselves a data

"O We regard this significance as qualitative and do not to processors

quantify it * the

a identities
E Physical centralization is one end point in the dimen- physical locations

sion of physical decentralization
of the processors

El (Software is also logically decentralized to different * the
degrees, which we will address later) magnitudes

: uniformity

a variability

of the interprocessor communication times

"* whether memory (in the case of multiproces-
sors)

"* or i/o (in the cases of multicomputers, networks,
and distributed systems)

------------ ---

Only Node-Local Computations Are Centralized In Multinoae Computer Systems
Some Computations Span Multip:e Node4

0 The only computations that are centralized (i.e., to
which the processor state changelcomunication ratio 0 In computer systems that have a multip,..;ty of nudes,
is insignificant) there must be some computations that

are those which are entirely local to a node * span multiple nodes--i.e., are trans-node

* either a uniprocessor- i.e., one processor/memory m tt on nul a Conwuadion,
pair

* or multiple processors having negligible physical
dispersal-
i.e., a multiprocessor with only globally shared,
uniform access time, memory

Node, Node. Node, Node.

* and thus are necessarily physically decentralized
to some degree

0 The least decentralized that multinode computations

can be is on a NUMA multiprocessor

"* by definition

(i.e., differentiating it from a Ut, multiprocessor,
which is single-node)

"* its stdte change/comunication ratio has unavoid-
ably lower bounded significance to all trans-node
computations-
e.g., on locality of code and data references in
space and time (and thus on performance at least)

341



Computations At Different Levels Of A System An OS Is Decentralized To The Extent That
Are Generally Decentralized To Different Degrees All Its Computations Are

o Computations exist at different levels of the system C) A centralized kernel or os (or any other level in the
"* from the applications system) is one which has only centralized computa-* fro the pplictionstions and services--

"* down to the os and kernel 
which implies that

"* (and even the processor interconnect hardware whits cmputat
can e tougt o ascompisig cmpuatins)* its computations and services are confned entire-

can be thought of as comprising computations) ly to a single node

EO The physical decentralization of computations can dif- * any accommodation or exploitation of physical dis-

fer at different levels of the svytem persal must be performed at one or more higher
levels in the system

(physical decentralization of the processor intercon- l

nect hardware is always maximum) D A kernel or an Os (or any other level in the system) is

decentralized to the extent that

"* each of its computations and services

"* is decentralized

and thus trans-nodc

----- --

A Decentralized OS Generally Is Not Suitable For An OS Intended For Lower Physical Dispersal
Lower Or Higher Physical Dispersal Than Intended Generally Will Not Function Correctly With Higher

E A kernel or an os (or any other level in the system) 0 A kernel or os (or any other level in the system) in-

which is decentralized to any given degree tended for lower physical dispersal generally will not

will not necessarily be suitable for a different function correctly with higher physical dispersal,

"* lower due to its lack of capability for decentralization (ac-
commodating effects of the state change/comunication

"* higher ratio)-e.g.,

physical dispersal than it was intended for * a centralized os generally will not work for a NUMA

multiprocessor-

e.g., because its centralized virtual memory man- 0
agement cannot handle the non-locality of concur-
rent references among -clusters"

* an Os for a NUMA multiprocessor generally will not
work for a "distributed" (NORMA) system-

e.g., because of the absence of coherent shared glo-
bal state which it depends on,
such as for intercomputation communication and
synchronization

~nlI. mtl I)• glUID. ,e *34 S2

342



An OS Intended For Higher Physical Dispersal Decentralization Is Scaleable Tc The Extent That

Generally Is Not Cost-Effective With Lower It Is Independent Of The Magnitude Of Dispersal

0 A kernel or os (or any other level in the system) in- 3 The decentralization of a computation is scaleable to

tended for higher physical dispersal generally is not the extent that the

* cost-effective with lower physical dispersal, * the significance to that computation of physical

due to the execution overhead of decentralization (ac- dispersal (the state change/comunication ratio)

commodating effects of the state changelcomunication * is independent of the magnitude of the physical
ratio)-e.g., dispersal

* any multiprocessor os has unnecessary overhead
or a uniprocessor- D The decentralization of an

* e.g., because of its locks * os service

* a NUMA multiprocessor os has even more unneces- * os
sary overhead on a single-node machine- * or any other level in the system

e.g., because of its more complex virtual memory is scaleable to the extent that the decentralization of
management each of its computations is scaleadle

* a 'distributed" os may have unnecessary overhead

on a U An os (or any other level in the system) which has

a * NUMA multiprocessor maximally scaleable decentralization is entirely inde-

a .single-node machine pendent of physical dispersal-

because of its facilities (e.g., for intercomputation i.e., can operate correctly on any

communication) to overcome the absence of coher- * single-node
ent shared global state * multinode

architecture

S (cf. delay-insensitive logic)

, , - - --.. ... . .- -..... .... . .. .

The Decentralization Of Computations At Each Level One End Of The Multinode Architecture Spectrum
Is A Fundamental Multinode Architecture Decision Is Highly Physically Decentralized At Every Level

Q A fundamental multinode system architecture deci- 0 One end of the multinode system architecture spec-

* sion is the degree of physical decentralization trum reflects the processor dispersal up to the-thus

* not just at each level of the system highly physically decentralized-application level(s)

* but also for the various computations at each level to achieve efficiency benefits from

"* the programming and execution structures of the
system being relatively congruent with that of the
application---e.g.,

a M-ary N-cube architectures

a and message-based os's

are a good match for the computational structure
of certain physical science applications

"* avoiding overhead incurred by virtualizing away
the the physical dispersal

"rr .... -...d. ... - . ... ... .. . . .... ..

343



High Decentralization At All Levels Of The System The Other End Of The Multinode Architecture Spectrum
Has Been Popular For Supercomputers And Realtime Is Highly Physically Centralized At Every Level

0 This end of the spectrum is historically--but dimin- 0 The other end of the multinode system architecture

ishingly-the choice for multinode spectrum has

"* supercomputers * as many computations

"* realtime computers * as physically centralized as possible

because the users of each have tended to o The goal of this is to minimize the impact of physical
* trade off cost-effectiveness for maximum perfor- dispersal on software costs-e.g., by

mance
a staying closer to familiar centralized program-

* be less concerned with ming techniques and tools

m legacy software a preserving legacy software

a costs of learning and tools for decentralization a being independent oi the physical dispersal as-
pects of different multinode architectures

0 The approach is

"* to create a virtual system for the maximum num-
ber of the higher levels

which is

"* as centralized as possible

"* given the processor ph)sical dispersal

"* by being highly decentralized at

"* the minimum number

"* of the lowest level(s) 0

-. . .. . . . .. . .. .. . ... . . .. . . . . . . . .. , T .... . .... . , ,,

------- - ----------

Lower Levels Can Create A Virtual NUMA System A Virtual NUMA Multiprocessor Can Be Created
So That Higher Levels Can Be More Centralized By The Processor Interconnect Or Kernel/OS Levels

o Trans-node computations at higher levels can be more 0 The lowest system level which can create this virtual
physically centralized NUMA multiprocessor is the processor interconnect

if the trans-node computations at one or more levels hardware-

below it cf. the KSR-i, and numerous distributed shared memo-

"* create a virtual more centralized system ry research projects

"* by being highly physically decentralized--e.g., * minimizes multinode impact on all software from
the os kernel up

providing a high degree of node transparency * requires innovative, non-standard, expensive pro-

Compiatioe, Compuitioas Compui•Wtio cessor interconnect hardware

Q Virtualization assistance may be provided by the os
kernel to simplify the interconnect hardware-

cf. sGI's rumored forthcoming multinode product, and7 tnumerous other distributed shared memory research
_•- projects

Single NUMA Multiprocesor - Given conventional processor interconnect hardware
that doesn't virtualize the nodes,

o The most centralized virtual machine possible in a

multinode system is a NUMA multiprocessor at all lev- the kernel and os are the lowest levels which can do so
els * cf. the OSF/RI version ofMach 3 and OSF-i (OSF-VAD)

"* virtualization cannot reduce the fixed (or lower that provides N-lMA virtualization on Intel's NOR-
bounded) state change/comunication ratios MA Paragon hypercube

"* these ratios have unavoidably lower bounded sig- * (not to be confused with the version of Mach 3 that •
nificance to all trans-node computations-- CMU modified to run on NUMA multiprocessors)

e.g., locality of reference in space and time

344



A Virtual NUMA Multiprocessor Is Often Desired For The Degree Of Decentralization Need Not Change
Extant OS And Application Layers Monotonically By System Level

C) Presently, it is most frequently desired that multinode 0J The degree to which computations are physically de-
systems have minimum impact on the extant centralized need Dot change monotonically by system

**0 level-

* qs well as applications e.g., physical decentralization is commonly
* low at the as level

3 This implies that one or more levels of computation to allow the use of extant node os's which were not
between the hardware and the applications must intended to perform trans-node management of

* be highly d'-centralized resources other than for networking

** and provide the desired degree of virtualization * high at an intermediate distributed execution en-
(e.g., a NUxA multiprocessor) vironment (e.g., DWE level

to reduce the trans-node resource management
El Some of this virtualization may be provided by in-ar- obligations of the

mediate levels such as a application programs above
"* a distributed execution environment (e.g., DCE) a node Os's below
"* an object-oriented execution environment (e.g., * moderate at the application software level

OMA-bsed) to reduce the trans-node resource management
D But such intermediate levels typically obligations (thus costs) of those programs

a While retaining ability to sufficiently manage"* do not have direct access to kernel and 0S level re- adepottesse' tutr
sources

"* only via conventional centralized 0s serviceg,
which limits their degree of
"* decentralization
"* timeliness

There Are Needs To Bypass Virtualization Logical Decentralization Relates To The Form Of
In Multinode Systems Multilateral Activity

0 The programmers at a physically centralized level oc. 0 We regard a computation's logical decentralization to
*casionally need to ue the degree to which it is performed multilaterally,

"* bypass some virtualizatic: determined by

"* and perhaps also employ some decentralized coin- * consentaneity-the extent to which the participat-
putation ing entities must contribute to the computation

before it is complete
e.g., * equipollence-the functional parity of the partici-

"* when they desire to see or control some software/ pating entities
hardware binding for * the number of participating entities
"* performance-due to node locality of execution

and data access 0 A quintessential form of utmost logical decentraliza-
"* fault tolerance-by partitioning and replication tion is negotiated consensus among autonomous peers

" in he ase f crtan sevic ouageswhee 0 Intermediate forms of logical decentralization are ex-
a application-specific recourse must be taken emplified by
a or the end-to-end argument applies * succession-where all activities of a computation

are performed for a period of time by one entity.
and then by another, in some serial sequence

* partitioning-where each entity performs a differ-
ent activity of the computation, whether consecu-
tively or concurrently

345



Physical and Logical Decentrulization Tend To Interact Decentralized Realtime Applications Considered Here
Are For Mission Management

"C High degrees of physical decentralization at some lev-
el 13 Some (including the earliest) modestly decentralized

imply significant logical decentralization of at least realtime applications are

some resource management at that level is valuable or * low-level, synchronous, sampled data communica- 0
essential tion, monitoring, and processing

* subsystems
"C High degrees of logical decentralization at some level,

such as the application, in a multinode context e.g., process control, sonar signal processing

imply high degrees of physical decentralization is 0 But the decentralized realtime applications of interest
present at that or lower levels here are those strategic ones now emerging for the

"C High degrees ofboth logical and physical decentraliza- purpose of managing the entire system's mission-

tion can easily have extremely complex dynamics e.g., coordination of multiple entities which are

which result in chaotic behavior * manufacturing a vehicle

* avoiding chaos while maintaining high perfor- * repairing a damaged reactor
mance and adaptivity in such systems having * controlling air or rail traffic
many degrees of freedom requires sophisticated
control techniques which are as yet nascent * conducting a combat engagement •

* the very strong coupling sometimes employed to
construct highly predictable realtime computer C Decentralized mission management applications

systems for low-level applications (e.g., MARS) * are in addition to

"* that are both logically and physically decentral- * employ and control
ized to significant degrees the cor.-tituent lower-level (centralized and decentral-

"* at the expense of adaptability ized) realtime subsystems

is sufficient but not necessary for the avoidance of 0
chaotic behavior

Decentralized Realtime Mission Management Systems Decentralized Realtime Mission Management Systems
Generally Are Subject To Extraordinary Uncertainty Require High Dependability

"0 Realtime mission management that is highly physi- C) The degree of mission success is determined by the ex-
cally and logically decentralized is distinctive in the tent to which the system can be depended upon to pro-
extent to which it is subject to extraordinary execu- vide sufficient
tion-time uncertainties at the application levels * timeliness

"C) The computations inevitably * survivability

"* are asynchronous (mutually, globally)-e.g., event * safety and security
driven, aperiodic

"• have dynamic dependencies---e.g., resource con- 0 The dependability of lower layer subsystems-theflicts, precedence constraints goal of traditional realtime computing-may be
flicteranepreycedence constraintsuntion

"* are co-evolving--each computation's behavior de- * either necessary for mission-critical functions

pends on that of others (e.g., digital avionics flight control keeping the air-

"* often constitute an overload craft alof)
* or part of the uncertainty to be tolerated at the" permit little if any downtime for repairs or recon- system and mission layers

figuration
(e.g., communications, weapons in various states

"C Computing system physical distribution per se also of usability)
generally introduces considerable additional uncer- but it is not sufficient
tainties-- (e.g., a flying aircraft which cannot perform its mis-

e.g., variable, unknown communication latencies sion is wasting resources and creating risks)

346



Resolving Realtime Dependability And Uncertainty Decentralized Realtime Mission Management Requires
Is Often Beyond The Capability Of System Operators Best-Effort Realtime Resource Management

"E In decentralized mission manaagement systems, a ma- 0l In decentralized mission management systems, both
jor challenge is simultaneously the application and computer system software (e.g.,

O* achieving sufficient dependabiity OS, DCE) must make an on-line best effort to
* achievingte sufficient dependabilityti

* accommodating execution-time uncertainties accommodate dynamic and non-deterministic

a external (application environment)
" Virtually all realtime reconciliation of uncertainty n internal (system resource)

and dependability at the system and mission levels conditions
has historically been based solely on the talent and ex-
pertise of the system's human operators-e.g., * in a robust, adaptable way so as to undertake that

"* in the control rooms of factories and plants m as many as possible

"* in the cockpits of aircraft * of the most important computations
a are as acceptable, in the time and other do-

"o Increasingly, the mains, to the application as possible
* complexity and pace of the systems' missions ""f Best-effort resource management is generally heuris-"* the number, complexity, and distribution of their tic

O resources

cause cognitive overload- * the use of heuristics for non-realtime computing is

* common in applications (most conspicuously inwhich requires that these operators receive more sup- artificial intelligence, pattern recognition)
port in this respect from the computing system itself * less familiar in system software

El Such support is beginning to appear at the application * but heuristics have been foreign to realtime re-
levels in a variety of non-realtime computing systems, source management-focused on static determin-* ism-until Jensen's Archons project and Alpha
but realtime constraints require it at the system soft- kernel for mission management
ware levels as well

U- -- - -- - - -- -- - -- - -- -- - -- --- - -- -- - - - - -- - - -- -

Best-Effort Resource Management Decentralized Realtime Mission Management
Involves Trade-Offs Of Risk And Situational Coverage Calls For A New Paradigm

"El Best-effort realtime resource management involves El Conventional realtime resource management atti-
* trade-offs of risk and situational coverage tudes and technology do not permit such application-

* best-effort on-line realtime scheduling heuristics specific trade-offs between
currently offer * situational coverage
"* empirically-based high confidence that accept- * optimality and predictability

able computational timeliness will be achieved
over a broad range of realistic conditions El A new, more

"* but no, or low, formal bounds on guaranteed * general
* best case timeliness

(as is necessarily the case for human operators) * scaleable

* traditional off-line "hard" realtime scheduling al- realtime computing paradigm is needed to better ac-
gorithms provide commodate asynchronous decentralized realtime com-

puting systems
"* formal guarantees of optimum computational

timing under extremely restricted conditions 0 Paradigm shifts are rather uncommon in computing-
"* but behavior which is unknown, or known to be e.g.,

pathologically wrong, outside those conditions * parallel processing

"E Examples of realtime applications which seem to call * data flow models
naturally for each of these extremes come immediate- and virtually unprecedented in realtime computing
ly to mind-

but beware of the human trait to miscalculate risks

* people erroneously undervalue the reduction of
risk

* in comparison to the elimination of risk

347



An Analogy Can Be Drawn From Gravity Nature Provides Other Examples Of Paradigm Shifts
To Accommodate Larger Scale

"0 Prior to Newton's law, people felt that they under-
stood gravity, as evidenced by the fact that they could Q Other examples of paradigm shifts for scaling up are
take it into account in building acceptably stable me- readily found in nature,
chanical constructions where higher animals are more complex because they 0

are larger, rather than vice versa--e.g.,
"o But some scientists were dissatisfied with this under-

standing of gravity when it was applied to larger scale, * the principles of cell biology inherently limit the
more complex, more distributed contexts such as as- scale of single cell organisms
tronomy * the physiology of insects inherently limits their

scale
"O Newton's clarification and formalization of the 'force"

of gravity overcame essentially all of these dissatisfac- Q Examples are also manifest in engineering--e.g.,
tions * a small stream can be bridged by placing a log

across it
0 But by Einstein's time, hardware technology (such as

instrumentation range and precision) had raised a * streams only a few times wider than the longest
new set of incongruities between what was then un- feasible single log can be bridged by joining a
derstood as gravity and observable reality small number of logs end-to-end

"* even wJer bodies of water require bridges based
o The understanding of gravity had to be generalized on entirely different principles, such as suspen-

and elaborated by the law of relativity as 'space-time sion
curvature" in order to be better applicable in larger,
more complex, more distributed contexts

"0 (Of course, now we know this remains a continuing
process--c.f., "gravity waves")

f l MbI W.• ,Sai,

Asynchronous Decentralization We Propose A New Model Of Realtime Computing
Impacts The Nature Of Realtime Resource Management

O Because the traditional realtime viewpoint and its ter-
o Asynchronous Decentralized Realtime Computing minology is imprecise, oversimplified, and unrealistic,

o A New Paradigm For Scaleable Realtime Computing it can-and does-limit0
"* the kinds of realtime systems that can be built

"* the cost-effectiveness of those that are built

O Asynchronous decentralized realtime computer sys-
tems for mission management are a conspicuous in-
stance of suffering from both these limitations

O We argue that our new paradigm of realtime comput-
ing offers a more systematic, comprehensive, and real-
istic framework which can help reduce such limita-
tions--

it is based on

"* a new, more general method for expressing time
constraints and scheduling objectives- 0
the Benefit Accrual Model

"* new realtime scheduling objectives and policies
which accommodate the requirement for robust
adaptivity to dynamic system and application con-
ditions--

Best-Effort policies

U , 34t . ,

348



Our New Realtime Computing Paradigm Is Based On A Realtime Computation Has A Time Constraint
The Benefit Accrual Model And Best-Effort Scheduling

0 We define a realtime computation to be a segment of a
Q The Benefit Accrual Model computational entity (such a thread, task, or process)

subject to a time constraint0 0 Best-Effort Scheduling

o A time constraint is the relationship between
"* when a realtime computation completes execution

"* the temporal merit of that computation

e.g., in the classical deadline case

* completing before the deadline time is better

* completing after the deadline time is worse

Q A time constraint is manifest in the computation pro-
gram as a demarcated region of code whose execution
completion time is subject tc the time constraint-

e.g., the computation must complete execution of the
region before the deadline time arrives

BEGIN TC (DL= 30 MS)

S}Restwo CaMucaso

END TC

otherwise it must suffer an exception condition

... -f ¶r 4b,• I. *us*. "SS•1ia. =.a, -m fl Ib ld M1 L, . "US. l . '2~ .

Timeliness Is The Basis For Realtime Scheduling A Timeliness Framework Is Comprised Of Three Parts

o We consider the timeliness-i.e., temporal merit--of Q Each realtime computation has a time constraint-
computations to be the principle basis for i.e., a relationship between

* * specifying * when the computation completes execution

* scheduling * the resulting temporal merit-timeliness--of that

* evaluating computation

computation completion times (e.g., for the classsical deadline time constraint,
lateness = completion time - deadline)

o In the Benefit Accrual Model, timeliness is defined
* with a framework consisting of three relationships 1 A collective temporal merit relationship defines

(e.g., functions) * the collective timeliness of a set of computations

* in terms of the individual timeliness of all its con-
stituent computations

(e.g., the number of deadlines met-i.e., with negative
lateness)

U Acollectwe temporal acceptability relationship defines

* the acceptability-in an application-specific met-
ric

* of the completion times--predicted or experi-
enced-for a set of computations

expressed in terms of their individual or collective
timeliness

* for specified system and application states

(e.g., acceptable means always meeting all deadlines)

M..I. I......... . . .. .. .... ... .

349



Timeliness For Classical Deadline Time Constraints The Traditional Hard Deadline Case Allows Only For
Is In Terms Of Tardiness Binary Timeliness And Acceptability

n The classical deadline time constraint (i.e., in schedul- 0 The traditional realtime computing interpretation of
ing theory) employs "hard" deadlines implies restrictions of timeliness to

"* lateness = completion time - deadline * a binary special case of the deadline time con- 0
" or tardiness = positive lateness straint-timely and untimely

as its individual measure of timeliness re5es tie deeine
run bne

release trme deadline
run tim .0 - btiely untimely

ngabv lateness m- positive (oness) a binary collective timeliness relationship

a untimely: the occurrence of at least one tardycompletion
O The collective timeliness relationship of a set of com-

putations having classical deadline time constraints is * timely: otherwise
most frequently chosen to be one of the following * a binary measure of collective temporal accept-

"* the occurrence or not of at least one tardy (positive ability
lateness) completion w acceptable: no occurrence of tardy completions 0

"* the number of tardy completions (unanimous optimum) under any conditions

"* the mean lateness a unacceptable: the occurrence of at least one tar-
dy completion under any conditions

0l Classical deadline-based scheduling theory often im- where the semantics of "unacceptable" are specific
plicitly presumes that to the computation and application-e.g.,

collective temporal acceptability is equivalent to col- * non-productive
lective timeliness m counter-productive

in some way

-- - 0

Often Time Constraints Are Not Binary Often Collective Timeliness Is Not Binary

"o Often it is very useful or necessary to have softer-i.e., 0 Softer time constraints necessitate correspondingly
non-binary-time constraints "softer7-i.e., non-binary--collective timeliness rela-

tionships

"o A common example of such a softer time constraint: t

if a particular computation cannot be completed at a 0 Using the previous time constraint example,
time of optimal merit-i.e., before its 'predeadline" the collective timeliness relationship could be one

"* completing it a little "tardy" has reduced merit- which (as a scheduling criterion) increases the num-
but is better than not completing it at all ber of completions in the optimal region-e.g.,

"* however, completing it actually tardy (after its * the sum (or mean) of
deadline) has negative merit-i.e., is worse than * weighted lateness = (completion time - deadline)
not completing it at all + k (completion time - predeadline)

release time prededline" deadine
n time 0 Some softer collective timeliness relationships are

routinely handled in terms of lateness with classical
opbimal suboptirnal i negstive scheduling theory
S meri ment merrit while others necessitate more expressive time con-

straint relationships
O Some softer time constraints are routinely handled in

terms of lateness with scheduling theory- Q Realtime computing practice tends to express and

but the linearity of lateness greatly limits the inter- handle softer collective timeliness less effectively-

pretation of merit (e.g., excludes this example) not on a time constraint basis at all, but instead in dis-
parate, ad hoc, imprecise ways

O Realtime computing practice tends to express and
handle softer time constraints even less effectively- S
not on a time constraint basis at all, but instead in dis-
parate, ad hoc, imprecise ways

. . . . . . . . . . . . . . . . . .. .l .... . .. . .. . ..

350



Often Temporal Acceptability Is Not Binary A Computation Time Constraint Relationship Is
Temporal Merit As A Function Of Its Completion Time

0l Softer collective timeliness necessitates correspond-
ingly "softer'-i.e., non-binary---collective temporal El In the Benefit Accrual Model, a computation's time
Sacceptability relationships constraint relationship-i.e., urgency-is made arbi-

trary by thinking explicitly of
"o The degree of collective temporal acceptability might individual temporal merit being any function fT of the

be based on computation's completion time t

"* collective timeliness alone-e.g., acceptable

"* only above one lower bound under certain cir-
cumstances, and above a different lower bound WtMt fit) 0
under other circumstances

"* to the degree that it exceeds a lower bound convpanon co.Ciscn rmum t
"* both individual and collective timeliness-e.g., ac-

ceptable to the degree that E0 The classical deadline function's merit of lateness is
"* some then depicted as

o total number of
o or specific individual

computations L.mnma 0

"* are late by a certain amount l Tom

"* under certain conditions Cww~M Won Coq•b.on Tumn

"o Realtime computing practice tends to express and * a line
handle softer temporal acceptability less effectively- * with slope + 1

• not on a time constraint basis at all, but instead in dis- * having a range of I - deadline, + -)
parate, ad hoc, imprecise ways * crossing the x axis at the deadline time (becoming

tardiness)

--------- - - --------- -----

The Traditional Realtime Computing Interpretation In Real Systems Very Often The Time Constraint
Of A Deadline Is A Downward Step Function is Neither Linear Nor Binary

o The traditional realtime computing interpretation of a El Both the classical and traditional realtime computing
deadline, when viewed as a time constraint function, interpretations of a deadline are often poor approxi-
is mationb to actual realtime constraints

3 , There are many cases in realtime applications where

pleting the computation within an allowable tardi-

0 -n ess periodC-PAW- C-iWonThmw C~3I lI * the merit is not constant prior to the "deadline"

"* a binary-valued, downward step function * the penalty is not constant after the 'deadline"

s completing the computation anytime between * the merit measure and range are application-spe-
its release (X = o) and deadline times is uniform- cific
ly timely7

a and otherwise is uniformly untimely -

"* the smaller of the two binary merit values may be

a 0: zero merit is attained for completing the com- CanpWUO. CMn Tkm -I Von Twme
putation after its deadline

* .: a large merit penalty is incurred for coin-k
pleting the computation after its deadline

CapiUWon C.- o TimeiC, n #

03 Deadlines are not a general mechanism for expressing
scaleable realtime time constraints

351



In The Benefit Accrual Model A Benefit Function Is Defined Over A Range Of Time
A Time Constraint Is Expressed By A Benefit Function

0 The time axis il Ll, ýic the scheduler uses-it may be
* The Benefit Accrual Model expresses an individual * physical

computation's time constraint relationship in terms of
a temporal merit called benefit (B) w absolute ("calendar/wall clock") time

s relative to (since) some past event
O3 Benefit functions may be unimodal or multimodal * logical-a number which monotonically increases,

+but not necessarily at regular intervals

0 The origin of the benefit function axes is the current
time tc (value of the system clock)

St"
0 The earliest time for which a benefit function is de-

(the non-linear optimizations involved in dealing with fined is called its initial time tA

multimodal benefit functions lead us to temporarily the latest time for which a benefit function is defined
confining ourselves here to unimodal ones) is called its terminal time t,

o T h e b e n e fit m e tric is a p p lica tio n -sp e cifi c a n d d e fin e d .....1system-wide 3 •

"[ Benefit functions are t

"* derived by the programmers directly from the re- t, t, tT

quirements and behavior of the realtime computa- (some systems and scheduling algorithms call for the
tion (usually an application activity) specification of an indefinite terminal time)

"* subject to a system-wide engineering process (just
as are assignments of classical priorities) E A benefit function is evaluated only for values of its 0

time parameter between the current time and its ter-
minal time

Sooner And Later Times Define The "Best" Interval Deadlines Are Due Times Subject To A Specific
Collective Temporal Acceptability Criterion

"O The later time tL is that after which the benefit func-
tion value is (monotonically) non-increasing U A special case of a sooner time ts is a due time t,. dis-

* thus, completing the realtime computation at or tinguished by the benefit function's first derivative
after this time is better having an infinite discontinuity at ts= tE

* a benefit function always has a tL 0 A deadline is a due time subject to a collective tempo-

ral acceptability criterion which does not allow the"[ The sooner time ts is that after which the benefit func- due time to be missed
tion value is (monotonically) decreasing

"* thus, completing the realtime computation at or U A benefit function is defined as hard if it has
before this time is better * a zero or constant negative value before t,

"* a benefit function need not have a ts < tr * an infinite discontinuity in its first derivative at t,

"o If its value becomes zero or negative at time ts • ts, a

benefit function has an expiration time * a due time tD

.*.* a constant value between tL and to

* a constant value between to and tr

-t , t 4t, L fs t'E - -- -i

9B

t| t - t t, ts=tDftE tr

IitLIts t5 t, t, t1

352



A Classical "Hard Deadline" Is A Special Case All Benefit Functions Which Are Not Hard Are Soft

0 The most common meaning of a classical "hard dead- 0 All benefit functions which are not hard are soft
line"--

- a computation which completes anytime between its 0 Soft benefit functions can have arbitrary values before

initial and deadline times is uniformly acceptable, and and after the optimal value at ts

otherwise is unacceptably tardy-

corresponds in this model to

* a hard benefit function with a
* deadline tfi=tr t

* unit binary range (0, 1) 1 tCs to

E0 Soft benefit functions need not haveB
* constant values on each side oftL and t,

0 t * expiration times

t t,ft ts= toftE= t+

El Classical definitions of'hard deadline" vary a little

"* they generally do not provide for a tL > tl B
" sometimes the range of this function is {--, 1); a t

few algorithms define the range as (0, ke), tL ts

where e is the computation's execution time and k
is a proportionality factor

A Released Time Constraint May Be Effective Realtime Computations Generally Have
Either Immediately Or Is, Tshe FP; u.- Dynamic Dependencies

0 A time constraint--and thus benefit function-is 0] Expressing or releasing a benefit function relative to a
made known to the scheduler at its release time future time/event, such as
(which is usually a scheduling event) * the completion of some other computation

O When the benefit function is released, its initial time * an external signal
may be is adding a (generally dynamic) dependency to the

* the current time-the time constraint is released time constraint
at the time it is to take effect (i.e., at t,= t)

0 Dynamic dependencies can require a realtime compu-
tation to be completed at a time yielding zero or nega-
tive benefit, when a computation

B •* has been initiated and cannot be

. t stopped (preempted or aborted)
t,ft c  a undone

* a future time-the time constraint is released in (such as one related to a physical activity in the
advance (i.e., t, > td) to improve scheduling application environment)

* would block another if not completed, despite its
consequential zero or negative benefit

(which can require indefinite function terminal times)

• • t "El[ Dependencies must be accommodated in conjunction
tc t, with time constraints according to some specific

(but t1:5 tc is a necessary condition for the compu- 0ceedencin
tation to complete, ifnot also begin, execution) and thus are not part of the benefit accrual model per

se

353



Computations Also Have Relative Importances Urgency And Importance Are Used Together

Q Each computation generally also has a relative impor- El In simple cases importance may be a constant, and
Lance-i.e., functional criticality-with respect to oth- benefit may be simply urgency scaled by importance
er computations contending for completion * urgency and importance might be combined prior

to execution time

ol Importance is orthogonal to urgencytoecuinim
* a computation's completion might be expedited hy"* a computation with high urgency (e.g., a near elevating its benefit for the remaining execution

deadline) may not be highly important time

"* a computation with low urgency (e.g., a far dead-
line) may be very important

0l Importance may be a function f of time and other pa-
rameters that reflect the application and computing
system state,

and can be represented and employed similar to ur-
gency El In more general cases where importance needs to be a

variable, f, and f/ must be evaluated together dynam-

+ fit,... ically to determine the benefit~-
tI e.g., as some function of the f, and f, functions, gt/j, fl •

t " Lrfh

Realtime Schedulers Are Usually Presumed To Know The Benefit Accrual Model Is Based On
Something About Computation Exwcution Durations Benefit Functions And Benefit Accrual Functions

0l A realtime computation has an execution duration e Q Benefit Functions
which the scheduler

"* either knows prior to execution-important for re- Q Benefit Accrual Functions
altime scheduling

"* deterministically (the most common presump-
tion)

"* estimated
0 stochastically (i.e., in expectation)
o non-stochastically-e.g., 0

- bounds

- rules

"* or does not know prior to execution-limits pie-
dictability of realtime scheduling

0) This duration may or may not take into account a fore-
cast of dynamic dependencies

Q Non-deterministic durations may be estimated dy-

namically (during the computation's execution)--e.g.,

" conditional probability distributions

"* execution-time knowledge-driven rules

354 0



i i-

The Scheduler Assigns Execution Completion Times Collective Optimality Is Not Always Defined In Terms Of
Unanimous Individual Optimums

"0 A benefit accrual model scheduler considers all re-
leased time constraints between the current time and 0 For the special case of any collective temporal accept-

its horizon t,--the future-most terminal time ability criterion defined to be a

* unanimous

... * optimum

of the individual temporal acceptabilities,

I there is an equivalent criterion defined in terms of in-
dividual, rather than collective, optimums-e.g.,

t4tr * meet All deadlines-meet each deadline

"O It assigns the estimated execution completion times-- * maximize #lU benefits--maximize each benefit

and consequently the

"* initiation times 0 In general, collective temporal acceptability is not de-
fined as necessarily unanimous or optimum with re-

"* ordering spect to the individual computations' temporal accept-

for those computations ability--e.g., maximize

0 using an algorithm which * the number of deadlines met

"* seeks to sufficiently satisfy the scheduling--collec- * the sum of the benefits

tive temporal acceptability--criterion * the number of computations during a time frame T

"* taking into account dependencies and importances which achieve at least P percent of their maximum

(such as earliest-deadline-first for the classical "hard possible benefit

realtime" criterion of all computations meeting their * the probability that at least P percent of the corn-

deadlines) putations during a time frame T will achieve their
maximum benefits

------------------ -- - - - - -- - - - - - -

In The Benefit Accrual Model Our New Realtime Computing Paradigm Is Based On
Collective Temporal Acceptability Is Based On The Benefit Accrual Model And Best-Effort Scheduling

Accruing Benefit From Individual Computations

0 The Benefit Accrual Model
*0 In the benefit accrual model, collective temporal ac-

ceptability criteria are based on 0 Best-Effort Scheduling

* accruing benefit from the individual computations
in a set

* in a manner specified by a benefit accrual function
for that set

0 This is general enough to encompass a wide range of
collective temporal acceptability criteria

* the unanimous individual optimum cases such as
traditional "hard realtime,*
for which the accrual predicate is the product of
the individual benefits (assuming the usual range
of (0, 1)

* cases not defined as necessarily unanimous or op-
timum with respect to the individual computa-
tions' temporal acceptability,

which we term best-effort scheduling

355



Conventional Realtime Scheduling Focuse On Realtime Computing Systems Generally Have A Wide
Unanimous Optimum As The Criterion Spectrum Of Mission-Critical Timeliness Needs

"O Scheduling principles and practices which are real- 0 In general, realtime systems need
time by our definition (i.e., based on satisfying comple- * a sufficient number of computation completion
tion time constraints) have until recently been focused times to be
exclusively on

* guaranLeeing that * sufficiently likely

* a unanimous optimum * to be sufficiently acceptable (perhaps optimal)

scheduling criterion will be met * given the current application and computer sys-tem circumstances

(e.g., the classical "hard realtime" case of guarantee- * (perhaps over a wide range of such circumstances)ing that all deadlines are always met)
where each instance of 'sufficient" is application-spe-

"o Even though the traditional "hard realtime" cases are cific
intended-and commonly imagined--to achieve this
ideal 0 The Benefit Accrual Model provides a framework for

"* physical laws (especially in decentralized systems) expressing

"* or the intrinsic nature of the applications (espe- 'softer

cially at mission management levels) a time constraints--in the sense of non-binary

generally make it completion time acceptability

* cither non-cost-effective a scheduling criteria-in the sense of non-unani-"mous and non-optimum
"* or impossible * in addition to--and in the same manner as--the

(there are only a few exceptions) conventional "hard" time constraints and schedul-
ing criteria

Q These softer needs are realized with best-effort sched-
uling algorithms

Best-Effort Scheduling Seeks To Do The Best Locke Did The First Best-Efforl Scheduling Algorithm
That Is Possible Under The Current Conditions

O The most salient characteristics of Locke's algorithm"0 "Best-effort" (BE) realtime scheduling algorithms seek * allows a wide variety-but not all forms-of Time-
to provide the *best"-as specified by the applica- Value Functions (TVF's)tion-- comrutational timeliness they can,

tion- crnruatinaltimeines thy cn,• intends that importance be reflected by scaling the
given the current application and computer resource * intes
conditions TvF values

* execution times are defined stochastically
"O This concept, * when underloaded, schedules Earliest-Deadline-

and the Time-Value Function progenitor of the Bene- First (EDF) to meet all deadlines--which in generai
fit Accrual Model as a framework for expressing time does not accrue maximum value
constraints, * if a job arrival, or execution time overrun, results

were originated by Jensen in 1977 and published in 1985 in a sufficiently high probability of overload,
jobs are set aside in order of minimum expected

"0 The first generation of BE--on-line (at execution value density (expected value/expected remaining
time)-scheduling algorithms emerged from Jensen's execution time) until the probable overload is re-
Ph.D. students in his Archons Project at cr{u, for the moved
Alpha asynchronous decentralized realtime os kernel * the scheduling optimality criterion when over-

"* Locke's algorithm (09es) loaded is the special (but reasonable) case of max-

"* Clark's algorithm (099o) imizing the sum of the job values attained
* does not deal with dependencies (e.g., precedence,

"O A second generation of on-line BE algorithms is being resource conflicts)
devised as part of a recent multi-university effort to
establish formal performance bounds for on-line algo- 0 Locke used simulations to demonstrate that his algo-
rithms in general and certain BE ones in particular rithm performed well in comparison to others, such as

EDF, for a number of interesting overload cases;
O A first generation of off-line BE algorithms is being de- but provided no formal performance characterizations

vised in France

356



Locke's Algorithm Has Boon Used Experimentally Clark's Algorithm Deals With Dependencies

Ui Versions of Locke's algorithm have been implemented C The most salient characteristics of Clark's algorithm
and experimentally verified to be superior and cost-ef- * permits only rectangular TVFs, whose value is the
fective job's importance
with respect to traditional realtime scheduling algo- * execution times are both fixed and known
rtthms, such as EDP and fixed priority, * the scheduling optimality criterion is the special
for a number of interesting cases-including (but reasonable) case of maximizing the sum of the

* in the Alpha asynchronous decentralized realtime job values attained
os kernel * dcals with dependencies (e.g., precedence, re-

"* a battle management application for air de- source conflicts) which are not known in advance
* fense, by General Dynamics and the Archons * selects jobs to be scheduled in decreasing order of

Project at CMU, in 1987 value density (vD)

"* a ball-and-paddle realtime scheduling evalua- * selected jobs are scheduled EDF, which maximizes
tion testbed by the Archons Project in 1987 summed value for the TvVs he permits

which also added * when each job is scheduled, so are those on which

"* nested time constraints it depends

"* timeliness failure abort processing * if necessary, precedent jobs are aborted or their

* in the Mach 2.5 os kernel deadlines are shortened (whichever is faster), to
satisfy the deadline of the dependent job

a a synthesized realtime workload, by the Ar-

chons Project in 1987 0 Clark's formal analysis and simulations showed that

"* when overloaded, if the algorithm can apply all
available cycles to jobs that complete, no other al-
gorithm can accrue greater value given the cur-

* rent knowledge

"* since future jobs are unknown, there is no perfor-
mance guarantee

h- , kfl, IW3bL , S fla, r , n14

Recent Work Explores Competitive Factor Bounds Maynard Is Addressing Overload Behavior
With Best-Effort Schedulers

U Researchers at trrexas, NYU, and UMass have recently
developed limited performance bounds for on-line re- El Maynard's thesis is
altime scheduling * improving the understanding of the overload be-

"* competitive factor measures the value an algo- havior of on-line realtime scheduling algorithms
rithm guarantees it will achieve compared to a * developing techniques for defining benefit func-
clairvoyant scheduler tions to yield desired overload behavior

"* considemv only rectanrgular 'T's, and execution
times which are (mostly) both fixed and known- U Its scope includes best-effort schedulers that use ben-

like Clark's algorithm, this means that scheduling efit density as the load shedding criterion
41 by EDF when underloaded not only meets all dead-

lines but maximizes summed value U The work to date provides an algorithm for setting job
"* if all values are proportional to execution time, an importance values to impose a strict priority ordering

on-line algorithm can guarantee a competitive fac- among selccid groups of jobs
tor of no more than 1/4

"• the performance bound is lower when 0 This allows integration of results from off-line sched-
ulability analysis, toa* value is not proportional to execution time * provide 'guarantees" when necessary and possible

w the ratio of maximum to minimum VD increases * retain adaptability of dynamic scheduling
a execution times are not fixed and known

"* confirms that performance guarantees are impos- U His simulations support the validity of the appruach
sible if workload characteristics are unknown

"* acceptable nerformance assurances may be possi- U He is also creating tools which help the system design-
ble when limited, reasonable, workload informa- er
tion is known * select and adapt suitable scheduling algorithms

for specific applications

Q Their algorithms are devised primarily for the pur- f se appriatio a l

pose of illustrating the performance bound * choose appropriate job importance values

357



There to Somewhat Related Work In Other Fields Best-Effort Benefit Accrual Scheduling
Exacts A Higher Price Than Simpler Approaches

"Q The most closely related work to Best-Effort realtime
scheduling is Cost-Based Scheduling for queueing and El Benefit functions and best-effort realtime scheduling
dropping network packets, done at Stanford algorithms

"* a cost function specifies the cost per unit length of * utilize more application-supplied information
queuing delay for a packet as a function of time than is usual

"* -.%ckets have only non-decreasing cost functions * place specific requirements on the kind of schedul-

"* instead of creating a schedule, the algorithm ing mechanisms that must be provided (i.e.. in the

queues the next packet which it estimates would 0s kernel)

cost the most to delay * and thus exact a higher computational price than

"* cost is calculated using a estimation of future cost when little or no such information is used

that would be incurred, which is the same for all
packets D- In many (if not most) cases, high cost/performance

can be attained by good engineering
"* the optimization objective is to minimize the aver-

age delay cost incurred by all packets U Much of the price can be paid with inexpensive hard-

"* dependencies are not considered ware

"* their simulations show that the algorithm per- * higher performance processors
forms well compared to the standard packet queu- * a dynamically assigned processor in a multipro-
ing algorithms, and Locke's algorithm, cessor node
for certain workloads---packets averaging unit * a special-purpose hardware accclerator (analo-
length, in near fully loaded conditions gous to a floating-point co-processor) in a unipro-

"o These premises do not correspond well to workload cessor or multiprocessor node

characteristics of general interest in realtime compu-
tation job scheduling

Best-EffortBenefitAccrualSchedulingWill~eSupported Realtime Trans-Node (Alpha Kernel) Threads
In A New Version Of The OSF Mach 3 Standa;d Are Also Being Incorporated Into The Mach 3 Standard

0 Version 5.o of the Mach 3 microkernel standard from 0 The same team is also incorporating the Alpha ker-
OSF has no realtime capabilities nel's realtime trans-node threads into forthcoming

versions of osF's Mach 3 standard-
El To create realtime functionality for subsequent ver- this will greatly improve the ability to construct asyn-

sions of the OSF Mach 3 microkernel standard, chronous decentralized systems (among other things)
a team of organizaaons is collaborating-primarily

"* Digital Equipment Corp.'s Libra program
"* OSF's Research Institute

"* WPI's Center for High Performance Computing
"* SRI International

with additional funding from
* DARPA

* usAj Rome Labs

* Digital early-adopter customers 9
1l This new realtime functionality will include

"* kernel mechanisms to implement virtually any
scheduling policy specified by the client-

specifically includiug best-effort benefit accrual
ones

"* a scheduling policy interface to the kernel mecha- 0
nisms that facilitates the creation, maintenance,
and replacement of policies

358



Ths5tributed andt Paralle in Fni4ron menls

JJ

N0 wto b u:d re al Lrrsle SJTprn~ivt 14 L

*eniv~rcramenit i~a~t cart be &stenmatticail
VaL-Zdated- , teor'tect one( cer iect,?

359



* /Ker-erce rlocdel.cs) c-0 el-.-
- .Aere. and)c L~J~t a re VA e-Zk te rfa~cej

aCc, Y"po0sq,,iicl/ ý;e-oYj - f0oZ 1,0 CcrLSt~r~L.ct Ia e

sjstems -from~ b~LL~c(y bLOCf~s arid rea~sokiL
atboutt -w tA.Mrrhfj beIgowcorof iýG cornpos(te

rl rwrov mer,'fs Co ri aori~rc butJcLsý j to ks
cL'1c. toct5 tc suprp rt tQ cl e Ak'p o SAt ;0 Lý

clyncA covy1po~ziý Yu of s~st~ers cinc{ i/a(.idate..

*~ e 1'c.e3 t 0 5LLfrro rtf V a.J(ct-dLr 642 ; ~d lteStctY

o 4)',octds Civid tools• {cr MecL-suyvcrye,,1Ts cgtict

ex~p er(L*m evt&&ovYL,

A Ai 5orc't4mrs* -ror ernd-to-enc( Ac4 edLtCji
apic( reSuLrce mayo)cLJ e, menzt

360S



-,a5o

0C

52~ ~~ c((J~t ____

S ~ en5e'( a~oe1~~361en



0

vers 0.orU'

COOtionalll

&e c rare dfortktbms fonea ACIedit-Am ~f-Ar~

- enera - to)- erid, A c edSL.,l

- Ac4 edu i-n g tCsA~S W&t14ep~ erf-Oi-S

362



ocktput errr-

0F

n at
e' r

p"ortp al p aoc~es ;,'cI

r 1*r) e 'v'me

Ir e

/~ g5e,"r.. !>- r"vc~ riwrwe)

(aiL~

re eeik



o

PERTS

Requirements Instrumented
Source Codei.

Instrumented
-Design Compiler -'Object Code

* I

* I
I -- -- - - - - - - - - - - - - - -

Resoem Abstract Concrete Ti
tResource ,Analysis •

Description Description Description ,

* Description Library (Model Base)

Synthetic
Schedulability Analysis System -- Workload

Generator 0

I Execution Time
Measurement Tool

L0

- contO;A a c(lecl'an oincgedulerr a4,4
resource marciyer$, tojetger w,.4 rtoi4Jfot e(.da•,'on and evat.ut.'rn ofi/'e fyitern *

fCf aV r 0J Pt i



. As an interactive design tool

The user provides

o task system description (an annotated data-flow
graph of the task system),

0 system resource description, and
o information on additional external constraints.

Outputs produced by PERTS include

o processor and resource requirements,
o sample task partitions and allocations,
o sample schedules and memory layouts,
0 performance predictions, and
o suggested design changes and tests.

* As a development and evaluation tool

- The user provides

0 annotated source code or object interface
definitions, and

o system description.

*- PERTS can provide

"o a simulated (or emulated) target environment, and
"o performance profile.

365



S--

0 - -- a-0

"" scheduling and - - -
"resource-access control - -

- "
S........ .......... ...r.°..e..... .f _ ................ . ........... ..I %% -- "I

..p.....r......oc.......qessors resources

"Iresource-access control
I " - " I

I .................................... .. ......................................................................

2 I.processors . resources

366



Task System Description

•n
dat'a. and.

I' ' 7temporoak

• oS

- Ready Time (0)

- Deadline (infinity)

- Period (infinity)

- Phase (0)

- List of resource requirements

(types, units and required intervals)

- List of optional intervals (null)

- In type (AND)

- Out type (AND)

- Laxity type (better-late-than-never)

Afti'6utef of aorlo0 4 tin;f of ,or4

367



Other Input Information

System description - a list of resources, each defined

by parameters including

acquisition time (time required to acquire an idle

resource)

de-acquisition time (time required to release a

resource) S

latency time

context switch time (time to switch the resource
from one task to another if preempted)

preemptability (whether the resource must be used

serially)

maximum number of owners

number of current owners

* External Constraints - Arbitrary constraints that
cannot be deduced from task and resource descriptions.
Examples are maximum allowable processor utilization,
intentional idle resources, nonpreemptive tasks, etc.

368



Schedulability Analysis System

. J-

r I L - -

Tas SytemDescription

SLoad Perform ance D ata
* ~Assignment i

Module ] Bancrand Model Base

R4L~~~- AN/O -i.c

Meioeee Cmpuatinheduolerne
* ( ,' chdlSchedu cheule Scheduler

+f)Cp 344
5aP

01
Sample Schedule Scheduling Directives

to Tesrbed

J, i J z,. liz J, JS .4

P, IL J 'z 3i~ ii

1,.3 2. J)4 Jiii JIJ

p) [ i ri r Ii .1 n

J,* 0 10 35 l20 J5 3

369



"• Variations in processing time and resources required
by individual tasks due to 0

data-dependent execution
effects of performance enhancing features
resolution and error in processor time and resource

usage measurements, etc.

"* Variations in dispatching and execution orders when

tasks content for resources
there are data and control dependencies
ready times of tasks are arbitrary

"* Variations in the number of tasks

ARE UNAVOIDABLE

370



* . A priority-driven or list scheduling algorithm

- assigns priorities to tasks,

* - makes scheduling decisions and, possibly, alters

task priorities

o when any task becomes ready and

o when any task completes, and

- at each scheduling decision time, executes the

task with the highest priority among all ready

tasks.

* All algorithms that never leave the processor(s) idle

intentionally are priority-driven algorithms.

* Examples are rate-monotonic, earlist-deadline-first,

* shortest-processing-time-first and first-in-first-out.

371



CseL

(.)rpoc. 4,'*Pe C, 3) /

F -71100 ,1 . 14 v--la

1-b"' cart we be sare, ic4t ott tas*ks 4reC

c4,mpetete A~p im

4.00aoobaat 4 A7e.
-c#Seck~ wAet'er & it deadt.nes ca-nbe

Met ;if atL taSk&s eaVe, -tet(,-fl-tOIGdUf'

proc essirlfj t.4mres

-cleck 4ow m-udi spairel,,n ii' e w o

-A &ve.; 4AI 'catsks ItAacve 4fe,*r namv1

p (ocesSysrl &nies
&,At Loa do 1Iese leYIt, !ett t4S

372



* Scheduling anomaly

* L(R) U(R) L(R) U(R)

6

SL(R) U(R)

2

U(R)
T3h711I ?

0 2 4 6 8 10 12 14 16 18 20 22 24 26

= (8, 5 ), T, - (22, 7 ), T3 = (26, 6)

missed deadline

* L(R) L(R)

Ti E t II*:3i.lllIIlllll ,ID , • , ,6U(R) U(R)
L(R) U(R)

T~2

L(R) U(R)
* T 3 [ I i I I I F7]

0 2 4 6 8 10 12 14 16 18 20 22 24 26

T, ( 8, 5 ), T2  ( 22, 7 ), T3 = ( 26, 4.5 )

We have methods to predict such behavior

373



I0

II

I 0

nB

I

IB

IB

wlAfiedporte
IS

374



c u ta e.ý p-liidi tah,.

y e/)r .I'

on( one4 processor

375



An Example Illustrating the Unacceptable Performance of

the Rate-monotone Algorithm for Multiprocessor Scheduling

0
Schedule the n +1 jobs (1, 2c), (1, 2e), • , (1, 2E), (1I +, 1)

on n processors using the rate-monotone algorithm

.r--n -1-

0 2E 1 I+1 •

missed deadline

2c 1U=n•+ --- 1
1 1+s

Solution: statically bind jobs to processors

376



6 independent tasks on 3 processors with

priority list =(TI, T 2, T 3, T4 , T5, T 6)

I T, T4

T3 T6 I
* 9

Processing times: 4, 6, 5, 5, 2, 3
Ready Times: 0, 0, 0, 4, 3, 5

T,*51T T5

T2 I

I T3 I T6 I
10.5

Processing times: 3.5, 6, 5, 5, 2, 3
Ready Times: 0, 0, 0, 4, 3, 5

0

377



Unexpected Behavior of Priority-Driven Algorithms

T 1:3 T 2 :2 T 3 :2 T 4 :2

T9 :9 T 5 :4 T 6 :4 T 7 :4 T 8 :4

(T 1 , T 2 , T 3, T 4, T 5, T 6, T7 , T8 , T 9 )

T2  T4  T57

T3 T6 T8
12

Suppose that we have four processors instead.

T, T T8  1

rT2  T5 T

1T3 T6

17

378



* Suppose that tasks have shorter processing times

* T1 :2 T2:1 T3:1 T4:1

T9:8 T5:3 T6:3 T7:3 T8:4

0 (T 1, T 2, T 3, T 4, T5 ,T T7, T8, T9)

IT, IT 5• TsI

IT21T41 T6  IT9I
0

1T3 1 T7
14

0

0

379



Scheduling to Meet Timing Constraints

* Remaining problems in the framework of

- the periodic-job model and 0
- the complex-job model

* Problems yet to be solved 0

- Scheduling to meet end-to-end deadlines

"o examples from tightly-coupled and loosely-coupled
systems 0

o variations of the end-to-end scheduling problem
"o related problems, existing solutions, and future work

- Dynamic scheduling (and monitor-based scheduling) 0

"o costs and benefits of dynamic strategies
"o examples of unstable and oscillatory behavior
"o needed solutions, theories and supporting data

- Scheduling to enhance dependability

"o scheduling replicated tasks to mask errors S

"o scheduling imprecise tasks to increase availability

Scheduling to meet deadlines with high probability

"o model validation and calibration
"o performance profiling techniques, tools and

experiment designs

380 0



Suppose that tasks are less dependent

T 1:2 T 2:1 T3:O T4:1

T"9 :8 T5 :3 T6 :3 T7:3 TO:4

* (T 1, T2, T 3, T 4, T 5, T 6, T7, T8, T 9 )

ST, I I T6 T9

IT2 IT4 T77

T3  T5 T8
16

381



j) resportse ilbnYne, of ai Aet cF' tase4,s
AcA etcted. ciccordjvi5 a~ pb1,Crcltj-

* I447.4s are nanpteer~plAvc, independ~ent

< -3 M. no. (- -processorS

*If 7tsAs are depenident. n~or" -preemptive,

-j< z--P- :f pcesso rs a re
,00 A'der7'~caL

<1 b' + Te 4p e ed ra .tio L

~ -const A 'r ,e . d*-P/eyent

kirnds of' proces-vor-

cons4L agf t~le yarne i1peed(
~ r. COPt ;fcA~ere are r a4-fcereit

*-rnds of resocwrces

tOe need sAm~lýair 6ow14 P4r s(p.ea~ci.C ta.4k Sets

jorit;fSndv l~ -e boutrlds

382



End-to-End Scheduling

0 F

{R -y -. ,o dI I .

" I I I~iIII!II~

{G} - -J=

processors
-jobs containing tasks to be executed in turn on different

types of processors and having end-to-end deadlines

Find: A schedule meeting end-to-end deadlines whenever such
schedules exist.

383



P~stevreeiences to be avoided

OTCSAIA C' i ie-Yor

k* JOOP: 5 Aplrob eli-erv 't- ot ct At.P/A ri leto ri&

(clccir e ýec~tor) ro"Lntr a6 orc't1~'yu-

*G-gchn.( -Pc/Ktre cf ge currcrif rt to
aj o flrlc{ L~e tQ) £ccatL -Poat-tLS

0 ofC; A C ý, e a 1,'o r CL CA Y) tcLbZ1ý0

J-c.pY,,c £IJ i ýry

* .- ~v~o L~h( ~.v)5LCL~b384~



* Problems in End-to-end Scheduling

supporting information

global

0 hybrid

local
• isolated I I I dynamics

major mode per per
outage change job task

hybri

central

control

* There are solutions emerging for the cases where

S- global information is available and current;

- global information is available but may be old, and
performance optimization is not important.

e Solutions are needed in all other cases.

385



End-to-End Scheduling in a Tightly-Coupled System

r. ----- - signal processor array

I 0Se
pipeline

sensor Global Memory 0

input

Data Processor output

sensor
input I

GM data
transfer

signal
processing -- --
data
processing Fý L

deadline

Typical assumptions:

Global information on load condition and processor status S

is complete and current.

Rescheduling is necessary only when mode changes.

386



End-to-End Scheduling in Loosely-Coupled Environments

(D)

(SI

* Examples:

- Scheduling jobs in remote controllers, command and
control systems, process control systems, etc.

- Routing and sequencing real-time communications

e Typical assumptions

- Global information is not available, incomplete, or
complete but not current.

- Scheduling is done

o at configuration time and major outage
o during mode change
o during session (or connection) establishment
o on a per job, per task, or per message basis

387



End-to-End Scheduling without Global Information 0

"* The only known approach: first distribute the overall slack
time of each job to the individual tasks in it. 0

"* Components of the needed solutions include

on-line and nearly-on-line scheduling algorithms 0

(How much can partial and old information help?)

algorithms for scheduling tasks to minimize error or
to miniimize the number of discarded optional tasks

- dynamic and monitor-based algorithms

388



* What makes an algorithm dynamic?

observed scheduling run-time system
demand decisions schedule behavior

A A
I I1

* I observed

behavior

.. ......................... actual demand .-...... ........ .........

* Dynamic algorithms are needed

- when the demands on the system (and hence the task
paramters) are not known completedly or a priori,

- when the system must respond to frequent changes in
demands or configuration quickly.

e Examples of dynamic algorithms include

- priority-driven algorithms - jiueac d,;Ye,
- local-balancing algorithms

- adaptive algorithms

Critical issues: cost vs benifit, stability and convergence

389



A Stability Issue: Oscillatory Behavior

(An example from Data Networks by Bertsekas and Gallager)

0 7+e00

o 0 + eo o

0 7+6 70 N +

2 2+

00 
0 0

0+ 0

0 6 14390



A Stability Issue: Convergence of Adaptive Algorithms

(An example from Data Networks by Dertsekas and Gallager)

Link 1
Capaity C

r lbit/sec)0 Destination

Link 2
Capaity C

r

C

a* r12 ~

0 T 2r 3T- AT 5T 6T 7T 8T T Time,,

39



Critical information about a dynamic algorithm needed to

support its safe usage

cost vs benifit

regions of stability and oscillatory behavior 0

ideal operating region and parameters tunable to keep

the operating point in the region

worst-case operating region

parameter 2

worst stable and oscillatory
case

\N parameter 1

392



Validation and Verification of Real-Time Systems
Developments

March, 1993

C. Douglass Locke

IBM Federal Systems Company
Bethesda, MD, USA
locke@vnet.ibm.com

(301) 493-1496

393



Outline

Introduction

Prerequisites to Verification and Validation

Verification and Validation

Conclusions

394

= = i I I I I I I



Introduction

Definitions

* Validation - Determination that the colution can be
made to work as specified.

* Verification - Determine that the solution works as
specified.

Prerequisites to Verification and Validation of Real-Time
Systems

* Timing & Performance Requirements

* Analyzable Architecture
* Resource Usage Estimates (processing load, network

"load, I/O rates)
* Measurement Methodology
* Analysis Tools

I

Verification: not done only following implementation

• Continuous process.
* Not just something to do at the end of the imple-

mentation.

o Not to be confused with an acceptance test.

2

395



Timing & Performance Requirements

Timing and performance requirements are generally
derived requirements

* Actual system requirements leading to timing and
performance requirements are, e.g., accuracy, avail-
ability, human responsiveness.

* Many system requirement specifications omit timing
and performance requirements.

* When expressed, they are almost always end-to-end
requirements.

3

396



Analyzable Software and Systems
Architecture

Architecture is the set of high level design decisions
defining:

"* Processors

"* Communications

"* Concurrency

* High-level data definition (generally as sets).

Time constraints must drive the software and systems
architecture.

e Operating Systems

* Communications protocols

"* Languages
"* Databases

"* GUI's

4

397



Resource Usage Estimates

All resources must be considered, including: 0

* Processing load
* Network load
* I/0 rates

Estimates must be made for each schedulable entity:

* Tasks
* Processes
* Threads

Timing requirements must be decomposed, resulting in:

"* Periodicity
"* Aperiodic arrival rates
"* Aperiodic interarrival times

5

398



Measurement Methodology

Some means for measuring resource usage required:

"* Operating System trace functions
"* Communications monitors

I/O recording functions
9 ICE hardware
e Logic Analyzers
* Application-level measurements

6

399



Analysis Tools

Dependent on scheduling/architectural models used,
e.g.:

* RMA tools
* Composite temporal merit computation

0

7

400

i I I I I II I I0



Verification and Validation

Continuous development life-cycle activity:

"* Architecture Verification - Determination that the
architecture can meet specified performance and
timing constraints.

"* Design Verification - Determination that the design
implements the architecture, and will thus meet the
specified performance and timing constraints.

* Code Inspection - Formal or informal determination
that the coded software implements the design, and
will thus meet the specified performance and timing
constraints.

* Model Validation - Measurement of implementation
components that directly address archecture, and
will thus meet the specified performance and timing
constraints.

* Performance Verification - Demonstration that the
finished product meets all externally visible specifi-
cations, including functional, accuracy, availability,
and timing.

8

401



Conclusions

Real-time validation and verification fundamentally
dependent on:

"* Early determination of architecture, derived timing
requirements, and load

"* Continuous tracking of development against esti-
mates

o Early resource utilization contingency management

In short, resource management for real-time must be S
managed in the same way
as cost.

9

402



ARfT PLoeSW System Design

11 System 1
Domain Requirements Partitioning Configuring
Analysis Analysis

(RTSA)

System Functional System Context Architecture HW Architecture
Specification Diagram Context Diagram Specification

Reusable Data/Control Architecture System
"Classes and Flow Diagrarms Flow Diagrams Requirements

Objects Data Dictionary Architecture -Allocation

Mapping to existing State Transition DIntrc ts

SW & Documen- Diagrams/Tables Diagrams Constraints

tation --- a' Architecture

List of In-House PSPECs/CSPECs Interconnect System Design
Expertise Event Specification Document

Even Arcitecure(including derived

Risk Reduction Descriptions Architecture requirements)Module - eurmns
Plan ERDs Specification

Initial "Build" System System DesignPlan Requirements Document
Plan Specification Documen

- Message
ERDs Description

Document

System/Segment SSDD, and
I Specification' Prelim SRS/IRS

"Mil-Std-490A

Type A Spec



Software Software Design

Requirements Ada-Based

stern Design Analysis Design

_Ada Task

CoRTSAnfigurin Structuring

Configuring Structuring

OOA Class/Object
Structuring

HW Architecture Context Ada Task
Specification Diagram Process Structure -GraphsChart

System Data/Control Ada Package
Requirements Flow Diagrams Process Graphs

Allocation Data Dictionary Description Ada Architecture
HW-SW ctDiagArchitDscito
Design State Transition Diagrams

Constraints Diagrams/Tables Ada PDL
System Design PSPECs/CSPECs Virtual _Node

Document Event Virtual Node
(including derived Descriptions Descriptions
-requirements) ecitos________ERDs 

Traceability
Matrix

Traceability
Matrix Software Design

Software
Requirements
Specification

Class/Object
Specifications

Class/Object
Dependencies

3ISDD, and SRS/IRS SDD/lDD
,lim SRS/IRS

Figure 1-1. ART Process Steps and Products,

K /•i and 490A/2167A Products



Software Design KN

Ada-Base 1
Design

Ada Task
Structuring

Process Software
Structuring Design

Evaluation

Class/O~bject
Structuring

Ada Irusk Task Structure
'rocess Structure -rpsDecisions

Ada Package Caller/Called
Process Graphs Decisions

Description Ada Architecture Packaging

Diagrams Decisions

Ada PDL Ada POL

Checklists
Virtual Node

Descriptions Class/Object

Traceability Decisions

Matrix Use of

Software Design Generics
Document

- Use of
Exceptions

SDD/lDD

_RT Process Steps and Products,
67A Products

v 1.2, Dec 92

403/404



o.a.

0 )>

Cl) r-.Eco
_ _1_ w ) h-cv

W D 1'

D~Cfl C)..

c/) 0n

p u %I (U)

0 oCD .J

z r-z

IL

mo wm0

Io

405LJCi



w CC)

w z 0

ow w 0
Lw C/LI

0 5 0

x -J

LL(Cl = C

w a DCI) 0
0 >

>C,)

0 0 <0 x

a a U)

0 2 10

00

406



SC

I- w
za*L w () 0w -j2 0
0. 0

j0 1O
W~~ 0l

aU C.)z
*0 z z

w w <
I-0 0

C/) j

w w
* 0 0

ADA~z0

407



00

00

) 00c
w a.)

C/) 0
C/U z- Um 0c

w 0- r
C.) LU: j F

C/) z <0
w MU ZIw LU

LU 0 F- a

Ca) -p >)0 0

oL 0Z =l o
m.1 0. m

wIz C.) z- )wI

oz _ 0.)
-J >. ZLWLL

*Lw0iC XU wLL

0 m: LLLC.

CD
U)

z 0

408



43)

cm

0 W

D 4

2 z 0 LL
~Cl) wl W0 w o

oL o~ 0

F-I 0
o 4 4u 0

*f urn 
LU

D U) 2 m
020 0 WO

j 0
W 4< 3: L z -z

I-J W4 w L <w

0 CCz
Om 0 M W Z wu

0~~~ Wl .wL

cc 0 W 0
D o C .) Z 0 C/)

00.

409



(01

(D

za
w 0

I 0
0 &IV

.W 0~ I) -A.

>/ 0/
jo0 z z

w Wi C.

1-- 0 0 a.C/) 1 -J m )

w- 0 0 0 0L
0 0 0

I-c
C

4100



CD

ClCL

I-W Cl) >-
z I

-Cf) 0 -

Cf) w - Cl)

w UJ >-I C)Z
(LJ >L j W

z C/) cr. z
I- w 0

z~ wz
LLo -w 5 E

w - >-0 0 J DQW w
<~ C) LO. RcoCm0
Xm C/) ww W ZWWW

0 CQXLmF
wj M 00 R m

-J C Cl) -F -
Cl CL 0 ~C/) C/)ULL L
_ l)Z 0 Cl) Cl) Cl) cl)

F- 
6

CCC

Uc

z

cvi

411



z
F-

M
0

C/) 0

w 0L
-,z 0
Ow 0 Z

z w
C/ z C/) -J

ClU) F- cc cc
0 <~ z o D 0
0 -j _j Z F- LL

z0 001
4:W - J F-x

u( M W C. ) F- I-
0: C/ Cl) m

LL w( 0i 0
0 cU) WZn

0. ZWUi DW
W0 w cr.-l

0- 0 0 6w p

.j F- M W aW z0

412



Clzz
00

<- z
CDCC :D LL0

= woz
ZOO 0~

ZZ
0W

w I-

* : w 0

Cl) (.) < M
W~~- 0/ .c

IM <l 2 0 01--
U)z0 Cl c : Clz

Cl) LLJCO 1  00u w CC<

0l * W

D 413w



w

w zw M w

w Z w0I0 0 0Cl) 0 0 l

(n l -J Z WL
0 M 0 <( a z5

Cl) l- l-~ m F5
Cf) 0 Cf l ua

I-J 1 m - Cl) az Z z fw L,0wow.
2I W M . U L LU0  C.

LU L- JO -ý 0Z Z CC0 W 0c: 50 0 J =m 0

LULU Wr M ý mI
m cc ~ waw F- w Z~ W0

LU LU( WOc O Z>Z- ~-

(I)~ ao LU>~'L
C/)- mZ-~ Cl0 0 - ZLL %w

ow >.-> 0l 0 0 Z LU -
LLa( 0~ -Ja

U)0 Dz> 0 0 0-
00- LL~ 00

0 n z >O0 c z
*0 F0 <

> z

0l

414



* CD
z w

M C/)
0, C/ w >. w

z< z

* z n ccc

Z z U) F-) L LJ

U LUW

* cm I- LC,) .2 u C
Cl) X 0)-I

z~ ~~~~ LWF L jj(LL

x X L LUI.<.L c

W m zo t- u. C O
%#moo< 0 f C L 3 0( 1 c LL Z-

Z 0 0 C/) ClZ 0 0 0 .
a.) U) 0 wu..

> - W. gtZ ccWZ

0/ C/)Z LL.
IC)LL *n I 0M <z0 -

>- < 4 0o ai

0 0

415



CDD
L(U

w 0
Cl) I
Cl) cnCD

I- I-

1- z

CD LU W

LU

F- < 0 CD-

l w 0 LU W zz

F- I-- ( 'c/

wL i-z 0 xDI- I~ 0 IM L0
Ul CD LU zO

w~~ 0 Ww >
C/F) LUm l

4(0 z 0<
F-LU) Z > U

LUL0 Room
-J J 3z O

0

CL z

416



C.%

z

W 2 D

C/C/
cn0 W

m 0

MC U) z1
* urn XO~

I-) 0J zz. m -J0 f

C/) o 3:: in .
I- L - 02 <oQ O

w 0Z 0 M0

0 Lio 0 0W'
-. 1 01

w 0 w- %%z 400

C/ Cf2. Cf0

C/ L w z: 0 c C/) U) -LJ Z
>- LI c

0 C?
w~~ ~ 0 I c oJ:

LLJZ ) 0 . l

C.) z a0wc
* J J W

w CM Z I=`3 0

LL Im r im C W417



z

w

w
u.j 0 0

0Ow
Cf) z %mo
F- 3:l) 0z z u)0 F

0i I-D J l (

0
4( 0o 0

cnCl) D0ZZ

>- o-, < - 040~

Um =DW
0 2oz<~

Cl) wLJ zii 4x o
< Cl)4<L)('( 0w :D 0 z--3

Lm  cc 0 (0 L)
LIOZCO= 0 .

w 0- 0

0
U U z

418



CL

0,

z z

0 m >0

C* z z)0
0 w~

us 0Uw 0C

o 0 0 0~
- z ý

z .w 0z=

L W1 -I 0l I-- w
w w. WIC) w

* 0 < 0 V~ < 0< w

C, C.) L o Cl)E

I- o zU wc
,C/ - o 0 <L LLXJl

Cl) W D 0 jw zOCICoZ
z R C, w0 1 i 0 0l

(0 z w cn 0fl.

CL .,

419



C.D.

0

C, w

0) n Z. 00L
w 0(1) 0

Li.. z w-o 0 -Cl)
o 00 w

z~ M=~Wg
LU OOR WOZC

CM 0~ LL >- 0
m 0 mm) * 0 *. Lý

am z

U) z)

w < 0

420



C/)
I- w

za
*~ w n

2 0
00 0o 0 U

0. C/ W w 0
>l 0/

C C.) z Z
0 z z p

Wwr w .
I .a. CL 0.F-0 0 0L* C) j j.i

>-w w 0 L

*) > > 00

A 0

421



z
C!,

C') Fn
W Cl) C/) W Cf)

oCI) > 0- Cl) >-

o C') -J c
Z- Cl) (f .. Z

C/) < < Z ,)

AZ~~ 2 l L
0 W jW

c0 w J w 0 !,

0~~~~~ >ZZWW)U -MU

0 >.- 000 dl) oL>-o-%
0 U) (Fn OIx -~0)l *~.(CC)I 0 ~

0 0 ý 0

I-- L422



00

o z
C.) c

*cl) Cl) I->
OW o

__ w z

Zl 0 J Z Cl 0

SZ Z. <.o Z W U(

W z 0 0 -J)

0 w C0
z~ z 0 W
z m

o z W z

01~~~ Cl Z z. !

0-

0.

S 423



0

z a 0

0w0 0

AL

00

CL a)

0

0 ~ 0 Cl) x>
m. I 1- 0

>(/ C/, 0L

0z z x:
W WL CLm)

0 0 CL
C,) umi r0

> > 0
Cl) w Wi 0.

w oZ0
00

z

424



CC)

C/)
2w

w/ Ix

I- z 0

-J 0

4C 20 WJ W -

L -o0 z

x F- Z L)

0 X z I - WU

o0 D0 U) D L C/)

zLL CLZL0 00u
* 

>.i :) <0 0 Z c.U 3 c00 0 L)

CC :> - F- 0 MF :

w w 0.1-L 0  - w
>- 0u 0

F- 0 04... 2 F-

X - r ~Z F- Lu z
O - 0 0 Zz.. Z 4-LJ

z - a4 0 4 )">F
ui0 J.~ 0o0=2mcr f

0L F -0 LL. M0-0 X F

oj 0 0 - ) C L
I- XXIXZ 

0 -M nI

04 z

425



C~.1c.,J

0
w Cl)

I-) w
Cf) C. C)
w z 0

cr 0i 1 0
CL w z
z Cm)

W C/) >-

w -j W2w Z C) wa> wCL
w W jI >.

> a -(.D ml)

0 w z
>- >

w j aM

I- > cr m Cl)
0 0 0 0

z

426



CL.

Cl)
* z

Cm))
C, w

C/)j 0m

0m 0 w ) L
Z D L w 0 F-M )0LL

0 = w 5 ý:Z

0nMD Cm I.-Z
ZW z Fn wwi

U) oMz 0 ti Lu

W Cl) wZ
* Cm) CL w OZw M

w x -- C/woCL- w
.j uw LLA- I S L)

W~~~ ~ C//)C . . c
z a W LL

W om 0L w CLn

z z
(.5

427



0)

Cl) Z

Cl) j 2I

0 LU Ic0
m< 0

I-) LU 1  0
C) C/) 0 XC) ,

z z Z < gL:C Cl)
Z~ LU j~

<- ze L

WC) mQ -J c

0m z LULu LuL

Z W f) MCl) I-- Cl)
0 ~ ~ -l ajz(/) ~W0 z

Fn-Cl), 0 .J
0  L) W (.

1w 0I

D~j0- C. LU2
0 DZ l)04 0 0)

02 : z w 0

mJZ u w- LU WI- ~W <
W4: LULU I wej I- aU
XU 2~~ F-W 2

LU U)> Z 00~.( Cl) z
-J ZU F- IL_ U)-

m DI i L W~ F-~
2 w LI W I U

0. U L -0
<~( 00m

0 c

428



00

00

0
w C/)

Cl) 0 C.)

w z 0
0 wo F-
P D.- x CD

z o
w Cl) 1 -

0 CL Zww -J

>0 cn >

w z Ow> 0
0 W W) ZW

* > 17 (I > u

W~1 F-W

* 0- P 0 <

00

wA

* z

* 
0

0 429



z ('4

cl) 0)
W 0~ 0

0_ z wU
01 w0

00
I- w

z >U > 0~
____w Z z w M

LI 0"0 < a m
w 1-Cm Z w0.i < z z
W 0E)C4 CL1

f >- Z- i I - Co)
CC g CL C/) zM m

1- - 0 F- CI- a c
ix Cl) WL LLCl L

ui w)o U)U 0(/ ww

0U W2 - 0 o I
Zi U 0  

in Xm W 0 0Z/

CC McIn W FCI) 0
0004JF I0 0 0Z

F- 3 C3 3l w U) Co

6J 0 ZQ0

D CC Z 0
In~~ J Lc

C) z cm)0)

Z o z o- F- :
CL Z C0

z UJ CL0
F- Z Z 430



*w a.

z

2 0
Cl)

z0 w
0ml CO)

LLF w L l
7u0 0 Ow a

WI- 0 0 WLJw
* Lc LL. LL.

CDw cc,,'
WC. W _C/:

0LJ ClM 2Z

w z 0)00,Um CM 0 Cl,
*.O 0 C/) Cl) Z

0 0w cc
CL0 wm Z U

C/) aw U)F -
* 4 ~CIC cn cc 0

W a w w w

00ý 4:4:l ) CC Z 4: F

* w U - C.) 0
-J U- Io C/)

__ 0 Oo. Cl 4:.

0 SD

C.,

431



0-

0
LU Cf)

I Cl)
Cl) LU
Cl) C~C.)
LU Z 0

0 D - I-
MW Lu z

z L.) 2
LU C/) C-

2 0 cl) 0-

CL Z j L
w Ow w

0 0> I
0 U LU ZW

>0

I-J M C!l)l
0 M 0 0 S-

00U) J cw .14 4
< w

> m

432D



cl)Cf CL%

0 -- >

1- 00a

z 2 w -
:= w l I

Il L) 6 6 r

w 0 lor 0~ 0/ )0 l
aO wW LL-0

F-z IC. 0 z-

W I- wwn
0 . <)-W zl 0u

02 D-M~1 a 0

Fnm Z L l)'~~ Z < )

* jum g3 0 -ClZ' ClJZ
-w 0 W<(000 M - 07

X 0W~ 10 w
w Cl n(o 0 w

M _ _ _ _ 
0 C-- +j 4

CJ) *l w I ID) .
w z

0Cl,

433



ww

a)~

C/)

Cf) C/) U

(/) C. 0
(J ) w :
wr 0 N

o 4:

000_ 0

z~ z

M/ (L LL
(o0 Cl) 0
OOz 0 -U

>~m I- w I- U
-R 00.

w ~+ +m ~ W 4
a 0 0 o 0+ 0

x W w
W 0 WC) 0

434



C-

0
w Cl)
x Cl)

0cl)F w
Cl) a~
w z 0
o :5 w

z C.) E
WL Wl CL

a ~ CI) 0

0 ~ Cl)>

w Z w> a ~

*w QwU >
w w W Z I
0 0 F-

0 w w zw
00

1- > xl

CD

z

435



00

0L Cl)C

ILz z
CL 0

Cl) m Cl) wrC) L C/)
z 0 U) < 1-0. w I-W w C/)Cl) 0CI ) cc z F- E

w- D W 0 Cl) F-
_ / C/) y 01 L> Z.

02 j 002
-J 2. 2 Z

OW F- w 7 0C)90
0> C/ W/W m-C) 0F- c,) 0 U m0a

W2 F0 - w F

< W 0 L
( ~ F- 0 I l L) I0/

Wa( F-~ Z <> w Z~ LZ F-~ cI ma<a

w w 0  0w o0zo
F-F- 3 o 0W 0..j L i..Cl) F JFcn ~ ujZ 0L)0>F-j 00 LU- j 0 F 0 Rz

JF UZ 00 O UF- uZ FLU Z0 F- F>-
OF 0 < F 0 Z wciZ

M~~c F- 0Z0 Zo WUC) 1
it eza'. 00 00( 0

436 00- 0



E 0

0 6i
C) G

0) oia) h

CD co 0 z
c C 1 

0) ) >-

CD 0 E. &-

CU U- cC

*~~ 0 U)

UJ) c4 0 tO 0) 3F 0

0) 0 0 c c cn
*E> U CL 0.

E 0 E c E 0 1&
a)E ) 0 =0 0 M CL

0 Cr ~ 0 (flD

L. 0 CF-> ~ V
D0 0n Z~ co 00¶

CU 0  0,D CU24

o coE Ea 0,~*
E5 CD m
Z E U O0~

4> 

CD.

0 E 0 0.
E, E. 0 cc ) 0w~~ > 0>g'E 0 *~C

0 X- 0CO0*
.) CD o u!)

zn 0) o w4

ClC V.C, lo 0
U.0. 0~ w 0~C

W)0>C P -CU

uiU 2 0) "~ '0 a~0 (C
CD 00

S~~ w wi
-0 r0 0. tC) 0.. cnn C

~0 -0 W% ._ z .

CO0 co e"- WE E - E rh-

*0(0 0w CD 00 wO 0

%now N r )0C* 1t
<10 W 3 l 0 &.0

ZD C D 0 a. -0 .0 0

010

a m C43C



E CF0
00

S .0

0 ) M 00 0 . c

o ~ E) z - -
0. .be ..0 ~ 0

U0 0 - C- c- 0 z
or 00

c> - 0MC 0. 0

E _j :a) 0U))D 4 >

wC t ccz z
C) 0 4) U z 0>

4= C

A 0 C 0 M4 '

m E T 0 t a- '. &
-W ,- 0> 0

< CC a 0

m s C 0 E 5C
CL 00. 0. ~

o ~ V
V- 71. E0 00 c > fn ~ E E

(0 01-0 C
CD cc 0) a

A. .1% "0 m- t;0 % W

zt 0h < o 0M0en za.z>oj W 0 .mU .0W-0C r L I

w tm 0 0 c -0 V -0 c

LU In 0-i c.04

Ow CYC

a 0

m 5 t: 0 U V

0 0 &: 10

0L 0) 0 0) 0 0= 0 -Z
r W W E -J

C1 zZ Cfl 0 ) Cb f0 o
0 C C

CO 0 c
438 6



Cl0)

0l) 0)

N a

-@ 0. 0

2! C~ 0

D cc

-C b. 0c
a a )O

ME (L a) c 1
0Cc

0 Cc C,,

J .cnoo m c.nU

439



00

00

0)(f0

2a3

En cuo
0 • E0,

~ 0 C

S~E .
.2m 00 cc 0 .0~C

CL.

CIS >. cc> w

CC>C~
01)

C-5CW

440

,*E.1 a D Cu
S.. . 0 ) • • ' !



I.-

00c

UU-

* cc

CACE

c0

;an 0
d (I,

44



I-

0 "
LM C

,W -

LMu

C0 " \n

SS

C'n

C C_

-9 W

I. +,, ,

0 c0

442



E
0 C

0) )0

E ~N C

Lm 0)

0)0)

4'0 C/ (D

00

0cc cc
)

0)c

CL 0)0 r

>". Co (D ) Cc Cck

= 0 0 Cbn

CL Ocn Cuý:0

I) 00 Cu 0 C0) Cu
E >0 n

ECo

cc~ -W % n
Icz~ 0)u

C-0~

443



0 0 C4
E6

'OCI) w cm

o o . 0)
0 EEo

M w
0cfl* w

2~En

00
inJu 0 c

~Ec 0

~~c 00" 4:

2 Mw 0

0 0)

C.-C~u
C__

;i ~ 00

444



a) 0)
Now 0

(1) 0 ff

00

"-0 a) 0

LM-a E

00

0 004. E
*r 0~.C

0)

Cu 00
S CC~.0 Lmu

I0) 0 0 0

CDJ M 0 ) ) C)C c C

E0 0

445



U' 0 0
) 0

0 . mw E

Cc >

0- 0

C/) 0 1)C

zm Ow 4 0 00

00
0O.

C0  woo 0 *.

.O ia) 0. L 0)

< m 0 0

0 o ~

-8-0 E
0.I

U)~

Zi 0 0

446



O-

ou~ ~ .0

o 0u

9M 00

0 C
*0 0

cc E~a m) aCu
* " : 0a

0 0 c 0

a). m -0E cUc
Cu. ow

m0cr~) EOO 0 i

ommE
C)) 0~ mn

C. . moo n
i-ocnO M5 (D.

('.&Am

SZ0 -0i I E Ii0
*No Cc 447



cc 0

0u 0 a

Occ

20000 14

Cua) S.'
CCc

C.)I

0 -i -

0 .m a)-

75 0a U-

o. Cu 0.-U

S_ CLc

(c 0. > Cc Cu. uG

0 0 E
r. .448



0 E

wU _
U- 0

U-U

-0-

0a0 0

a)a

1f) 0

aa)
- U) cu U)

a))

E
c~a)

CI~CI449



0 C
Lu.M

CL

0 10

E 0 4
00

ErE

0_

MOO

0

05



a)U) x
>0 CL 00

E 0
00.

* E aVCuo
0 Cc

0. %*0
0 o 0 >

* ) 0 a)0. Cc

0. WINNOWlU
NO)
E E%* -

E~ 0. moo

>11O0a 0'0-L

*n a).

_ ~ .0 000 CL)

MINNOW 0;iI Ii0
451



'0

00 0 C

(ncn

CL
00

o0 0

00

x >• 00

- 0 E
o 0- -

00
L) U))

452.

0u11~952

• •w m I ii ili nl l ! || | || I0



MEE Cc 0 0)C

Ccc a) .

C~0 0 m

> E nE
La 0 0 om %i m Im0

ca0  
UNDE

0 -'

Ccu -' CcU )E
31 -4- c va) 3:
C CL

0~0

C El

0. C.. 0.

C) 0
W- * 0(5 0.L

Z) CC ou 0cuE

Cu*10 cc)
CL 0 0

C 
4 5-



(1)

oJ _ 0

a 0 00n 0)
-01
L-l Cu 1 >

0 00-o wo

0Lm &,L
cc 0- 0-

E ~ 0)% 00)c
(0cc L. 00

>) 00 Cu
00

0 0 0

-- ) Eu W.0

0)0c=3 0 0 cc..

C0)'

U, 0 owa
0) 0)C 0)'cc

454'-



((D

%CLu
'U) 0

(D-

0cUc0

rr E E
Lu~ a0a E

II a))~ a)
Uo w.-

0 cn 0

0~- 0 CU- C3L

_ CU~ 00

cc M0 0UL

U) Cc )E.0 (1 )01
>l 4)u

a 0
~UCL

x w Cc 0

455



E0

o co

0) 00

0 a 0

D a 0 0

mw 0
m- CL L

L..M

0.- 0

C0 w 0

- C 0m C,)

0) U) -CD2 4

0 - n

- Im..I1456



*W
L)

0M 0

LM~ 0
0u 0LC

Co CL 0 0
-. C 0

N2m

LuM a 0m .

00-U.2 .~0

0 m0

* 
-

L .. ,,

45



0 0

Cuc

0

(n4)G4

CLu

00
c0.

- - 0)~ 058



LIMC

al) iliu0

o -o

0 M Rn

0) 00

E

0u Ncj 00.

0)00

4)0 (D
&- U

;B 0 .0i
C-5f).4-w *

0)459



0 I) 0

00

0 E
"LOW o._•C.,.

0• => E•=. ogggg
0=._

pm~ ~ O w E *0-

0)S 0

-0 

E
w ., i 0 I

-0D 0 >

a).a CL 0

0.0 E O0cuc
0 4)-0 % * 0 C

MO 0 M460



cc

0 U)

IE
.3V=

0))
4).

a0 0

* UV)

CC

(46



0

0 0n

110 0

1140

.50 C* E

000

MGMC 0 :2n
won >. 0 a b

04- 0 040 c oE

0a r 0.0
CL00

go-mlEOno 0oE
G.. CL..

1.. 00 g'-E

46.2



CI

(W)

.... ........ ... ... 0

CL

02

0) Co 0

S0 c 0 0

404o 0 NMU

463



"MmN

0o

. .. .. .. .
80 E

0-0)

M~ CL

0 0

0>.00 00

00) 4) C
C0

00 0 C

-00
w G464



CLC

00-

CC
2c

:4~I Iu465



........................

.. .\. -....

0D 0

04)

MIN) .0 0

oo 4
C 0)

0 x
Iwo 00

0 0 cc

E n 4 6.



X0

(U))

* 0*
CL 0

400

X.:(U)

o L c
0.m 00

LA.~

wb C 0c z

0U 0

* 0 .C (467



..... .............. 
...........

000

0 4)

4) 0

0 0

.. 2

ow 0 U,

0 .0 0)
I.E.) C) 

-

a))
()) 4) ~

o bw 0
a- '0 b- 10) ) 0

16m a 0

0 IL) wo

0) boooo a
4) 0C0 00bo 0)

Ck 0 0

468



°CIMbla (D-

Wei Zhao
Department of Computer Science

* Texas A&M University
College Station, TX 77843-3112

409-845-5098
zhao@cs.tamu.edu

IDA 1993

Outline

"* Need of Predictability and Scalability

"* Predicting System Real-Time Capability

"* Scalable RT Scheduling Strategies

"* Summary

• M'• IDA 1993 =

469



IDA 1993

Trend of Real-Time Comnuting

" Limited budget
"" Advancing with technology

Design Cost
Production Cost 0

Making smart (scientifically justifiable)

design decisions 0

System performance must be predicable.
"•"4 IDA 1993 __

470



Trend of Real-Time Computing (cont.)

*Massive parallel processing

• High speed networking

Resource Management Overhead /
i* System Throughput

Resource management must be scalable.

'IDA 1993 __

0

* Requirements

* Utilization based predications
0

* Successes and problems

* ~IDA 1993

0
471



Requirements of Performance Predictor

Performance Ok

Specification Predictor Not OK

IDA 1993

* Predicating system safety margin is

the most essential.

==> Predication must be stable

• Predication should not depend on
detailed system specification.

==> Utilization based predication

M IM
W' IDA 1993 -4

472 5



0

Utilization based predication:

* • Worst Case Achievable Utilization

If the demand is less than WCBU,
real-time constraints are met.

* This is a measure of the worst case.

1DA 1993

Progress in WCAU

"• C Liu et al (1973)

RMS for a single cpu system,

* WCAU = 69%.

"• CMU Research Group (1980s)
WCAU for various environments.

"• TAMU Research Group (1992)

WCAU(FDDI) = 33%.
* N IDA 1993

0
473



Successes with wCAU

"• DMS/SSFP

"• Future Bus 0

"" SAFENET/FDDI

IDA 1993

Problems with WCAU

"* Existing work is limited to
single system components.

"• Many interesting architectures
might not have meaningful WCAU. 0

"• Does not provide any information
if the demand > WCAU.

"WII IDA 1993

474 0



Another utilization based predication:

Guarantee Probability

*s • Definition
GP(U) =

Prob(A set of requests
are guaranteed I demand = U)

• A measure of both average and worst
cases.

* A generalized notion of WCAU:

0 WCAU = max( U I GP(U) = 1).
w 33MIDA 1993

Guarantee Probability for FDDI
S)yncda,-- Mesage Guarmatue Pwobabtiy an FDDC

I-D

I (AMP41Nd

5....M., -
ex jj.%-M.-

LIMM U

Nwnber of stations N- 100.
Msr"•m P"o -10 MOS.

* p84 IDA 1993

475



The 3rd utilization based predication:
Average Breakdown Utilization

IDA 1993 us"

Utilization based predication helps to

"* make design decisions

"• establish management confidence S

"• reduce testing and integration cost

-.W IDA 1993

476



* Is EDF scalable?

• R-Shell---
a new RT scheduling strategy

IDA 1993

Is Earliest-Deadline-First Scalable?

* Scheduling algorithms for centralized
systems were well studied.

* * Many optimal algorithms were developed

* Optimality is proved by assuming zero
scheduling overhead.

• In a distributed environment, scheduling
overhead impacts the performance.

*.s IDA 1993 ...

477



An Example: scheduling real-time 0

messages in a token ring network

Three protocols to to studied:

"• Simple token passing protocol
a.. Non EDF

" Priority driven protocol
--- Approximate EDF

"* Window protocol
--- Exact EDF

MDA 1993 -

0.030I 0 I

I I+i
002S

I I* a

0 02

I IS 2 6 26 26 SIt 1

0" Ae -- -- L_ -, -

l l 32I 14 254 $12 1~ v024

I a

r,. IDA 1993

478



0.0

I~~ ~ ..... .I l .~w .. .

16 oo-I-. 0 126 25

Pw~~~l ID 99 w

"IwInw - - Tae -oda

0.0 a

.1-1

6s 3 4 126 250 612 1024

0w IDA 1993 - m.

I47



0. 00

to 24 120 256 012 1024

0

IDA 1993

In a parallel/distributed system,

Performance = Schedduling Policy
Scheduling Overhead

MDA 1993

480



R-Shell
A New RT Scheduling Methodology

0 Objectives of R-Shell System

* For distributed parallel/distributed
real-time applications

* Use of a scalable scheduling method

is MDA 1993

Scheduling in R-Shell

"* Semi-dynamic

Partial schedules are generated at
compilation time

"* Application autonomic

Each application has a scheduling
agent.

There is no system scheduler!
M I M

*.48DA1993

48~1



0

Application Run-Time Support Operiatng Implementation0
Program Environment Sys,,ems Platform

* .
* Resource Resource

Agent i•

AgentResource Resource
: M

M anager

IDA 1993

Summary

"• Real-time scheduling in parallel/distributed
system is challenging

"* Predictability and scalability are two 0
key issues

"* Further systematic exploration should
result in cost-effective design methodology 0
for new generation RT computing systems

PWX IDA 1993

482



Form ApprovedREPORT DOCU MENTATION PAGE OBNo. 0704-0t188

Publc reporting burden for this collection of inormation is estimated to average 1 hour per response, including the time for reviewing mstmcuons, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of riformation, including suggestions for reducing this burden. to Waslungton Headquarters Services, Direc:orate for Information Operations and Reports. 1215 Jeflerson
Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Protect (07114-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1993 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Proceedings of the Workshop on Large, Distributed, Parallel Architecture, MDA 903 89 C 0(03
Real-Time Systems

Task T-R2-597.2

6. AUTHOR(S)

Norman R. Howes, Dennis W. Fife. Jonathan D. Wood

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Document D-1425
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORING/MONITORiNG AGENCY NAMEAS) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ballistic Missile Defense Office REPORT NUMBER

The Pentagon, Room 1E149
Washington. DC 20301-7100

II. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution: 8 June 1994. 2A

13. ABSTRACT (Maximum 200 words)

The workshop on Large, Distributed. Parallel Architecture, Real-Time Systems was sponsored by the Ballistic
Missile Defense Office (BMDO) and the NASA Ames Research Center and hosted at IDA in March 1993. The
purpose of the workshop was to obtain expert opinions on the following questions: (1) What is the best design
methodology for this class of systems? (2) What is the proper relationship between design theory and
scheduling theory? (3) What is the best method for validating this class of systems? and (4) What are the most
promising areas where resources might be applied for near-term benefits? Twenty-three experts from
academia, government and industry were invited to attend of which seventeen accepted. In total, there were
twenty-three participants including sponsors and IDA research staff. The invitees contributed position papers
in advance of the workshop and presented talks from transparencies. These position papers and transparencies
comprise the contents of the proceedings. The informal discussions that took place at the workshop are
summarized in the introductory material by the IDA research staff. The advice, opinions and methods of the
participating experts are intended to help BMDO and NASA in the development of their respective software
technology planning.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Real-Time; Parallel Real-Time; Distributed Real-Time: Real-Time Scheduling; 506
Real-Time Design Methods. 16. PRICE CODE

17. SECURITY CLASS IFICATION 18. SECURITY CLASSIFICATION 19. SEC1 ýRITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 tRe,. 2-89))
Prescribed bv ANSI Std. Z3)- IS

29-102i


